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Abstract—In this paper, we address the problem of maximizing
the ergodic sum-rate of an N -user cognitive MIMO Interference
Channel (IC) formed by unlicensed (or secondary) users. We
assume that N secondary users coexist in the same area and try
to access the same set of frequency bands. In such a setup, we
define a cognitive MIMO IC as an extension of a classical IC
where each user has multiple antennas and multiple frequency
bands for transmission. We further assume a typical cognitive
radio scenario where the structure of interference signals is not
known and interference cancelation is not possible. Therefore,
interference is treated as Gaussian noise in this work. The prob-
lem of ergodic sum-rate maximization reduces to the problem
of finding the optimal power allocation for each user over each
spatial channel in each frequency band. This problem belongs to
the class of non-linear non-convex optimization problems and is
hence challenging to solve analytically. We extend a reformulation
and linearization (RLT) based branch and bound (BB) method
to solve this problem. BB/RLT was recently proposed to solve
the sum-rate maximization problem of a single band MIMO
IC with the guaranteed convergence to the global optimum. It
should be noted that we are proposing an optimal power control
scheme to perform power control simultaneously over spatial and
spectral dimensions without any explicit interference cancelation
or Interference Alignment (IA). We also present some interesting
comparisons between the sum-rates achievable by the proposed
scheme and those by IA.

Index Terms—Cognitive MIMO radio, interference channels,
interference alignment, maximum sum-rate, non-linear non-
convex programming.

I. INTRODUCTION

COGNITIVE radio has been one of the most researched
topics of the last decade. It has attracted the attention of

industry and academia alike. The concept of ‘cognitive radio’
(CR) was introduced by Mitola in late 1990s as an enhance-
ment on the traditional software radio concept [1]-[2]. The
key idea of CR is to add cognition to radios so that they can
adapt to the changing electromagnetic environment to maxi-
mize the utilization of resources (especially spectrum) in the
network [3]-[4]. The interest in CR was further fueled by the
Federal Communications Commission (FCC) measurements
that clearly indicated the under utilization of the spectrum in
the existing fixed spectrum allocation regime [5]. In the fixed
spectrum regime, each wireless user/technology is allocated
a fixed frequency band that can not be utilized by other
technologies. Though this type of spectrum allocation avoids
interference, it is not optimal from the spectral utilization view

point, as shown by [5]. The inefficiency of fixed spectrum
allocation has led to a plenty of research activities around the
dynamic spectrum access aspect of CR [4], [6].

Dynamic spectrum access models can be categorized into
two main groups, viz., open sharing models and hierarchical
models. Open sharing models consider all the users as equals
and there is no concept of licensing the spectrum [8]. On the
other hand, hierarchical models consider that the unlicensed
‘cognitive’ (or secondary) users share the spectrum with the
licensed (or primary) users. The basic idea is to allow the
secondary users (SUs) to access the licensed spectrum while
keeping the interference perceived by the primary users (PUs)
within limits [6]. Two major spectrum access strategies within
hierarchical models are spectrum underlay and spectrum over-
lay. The underlay approach allows the SUs to access the
licensed spectrum with the condition that they will operate
below the noise floor of PUs. On the other hand, the overlay
approach allows the SUs to transmit only on those frequency
bands where PUs are not transmitting. In this paper, we
consider hierarchical access model with the spectrum overlay
approach for dynamic spectrum access. This approach is also
referred to as opportunistic dynamic spectrum access [6]. The
main steps involved in this approach are to first identify the
available frequency bands (white spaces) in the spectrum and
then allocate them to the SUs. In this paper, we assume that we
have perfect knowledge of the white spaces and will primarily
focus on dynamic spectrum allocation (DSA) aspect. Interested
readers can refer to [9] for a discussion on various spectrum
sensing techniques.

In this work, we assume that each SU has multiple antennas
both at the transmitter (Tx) and receiver (Rx) nodes. The
main goal of this work is to develop an optimal spatio-
spectral power control technique to maximize the ergodic sum-
rate of these MIMO SUs treating interference as Gaussian
noise. Since all the SUs mutually interfere, this network can
be analyzed as an extension of a classical MIMO IC with
the addition that each SU has multiple frequency bands for
transmission. It is worth noting that the characterization of
the capacity region of even the classical single-band IC is a
long standing open problem. It was introduced by Shannon
in early 1960s [10]. Our understanding of the IC capacity
region is severely limited despite persistent research efforts
spanned over several decades [11]-[13]. Until recently, we just
had some insight into a few special cases of the simple two-



user Gaussian IC, such as the very high interference case [14]-
[15]. In an important recent step, the capacity of a two-user
Gaussian IC was characterized to within one-bit of the true
channel capacity [16].

To work around this problem, some researchers have taken
an alternate approach and mapped this capacity characteriza-
tion problem to the problem of characterizing the degrees of
freedom of an IC [17], [18]. An IC is said to have D degrees
of freedom, if the sum-rate (SR) can be expressed as:

SR = D log(SNR) + o(log(SNR)), (1)

where log(SNR) represents the capacity of an isolated user,
o(log(SNR)) is the residual capacity term and SNR is the
signal-to-noise ratio. The most remarkable result of these
studies is that an N -user IC has N/2 degrees of freedom
per orthogonal spectral, spatial or temporal slots and can
thus achieve at least half the sum-rate of its no-interference
counterpart for any number of interferers. It has been further
shown that these N/2 degrees of freedom are achievable by
Interference Alignment (IA) [18]. The idea of IA is to pre-
code the transmit symbols such that they are orthogonal to
the interference at the intended Rx node and aligns with the
other interference signals at the rest of Rx nodes. Several pre-
coding methods are shown to achieve IA for single antenna ICs
with time or frequency selectivity [19], [20]. N -user MIMO
interference channels are also shown to achieve N/2 degrees
of freedom when the channels have infinite selectivity [21].
However, it is difficult to find analytical solutions to the IA
problems in general and even the feasibility of IA over a lim-
ited number of signaling dimensions is an open problem [22].

Another popular way of characterizing the capacity of an
IC is to maximize the sum-rate by treating interference as
Gaussian noise. The cognitive MIMO sum-rate maximization
problem was first formulated in [23] by extending the sum-
rate maximization problem of a single-band MIMO IC [24].
These optimization problems are known to be non-linear non-
convex and are hence difficult to solve analytically. Even the
popular local optimization algorithms, such as gradient based
search, can not guarantee global optimal solutions for non-
convex problems. Recently, a global optimization algorithm
was developed in [25] by coupling the reformulation and
linearization technique (RLT) with the Branch and Bound (BB)
strategy to find the global optimal sum-rate of a single-band
MIMO IC under the assumption that each user distributes
its transmit power equally over all the spatial channels. This
assumption was relaxed in [26] to find the optimal sum-rate
of the general single-band MIMO IC. In this paper, we extend
the BB/RLT algorithm to find the maximum achievable sum-
rate of the cognitive MIMO IC. It is important to note here
that this problem is essentially a power control problem where
we control the transmit power simultaneously over spectral and
spatial domains subject to a maximum power constraint. IA in
not explicitly considered in our setup. However, we compare
the sum-rate achievable by optimal power control with the
one achievable by IA and show that power control performs
significantly better in the low interference and low SNR
regimes. This result is significant from the CR perspective
where the SUs mostly operate in the low SNR regimes. We

further show that the presence of more orthogonal spatial or
spectral channels improves the performance of power control
as compared to IA.

The remainder of the paper is organized as follows. The
system model is introduced in Section II. Sum-rate maximiza-
tion problem of cognitive MIMO ICs is discussed in Section
III. The proposed BB/RLT global optimization algorithm is
presented in Section IV. Section V deals with the numerical
results and the paper is concluded in Section VI.

II. SYSTEM MODEL

A. Assumptions

Several assumptions are made in the analysis to facilitate
the system layout. Firstly, it is assumed that we have perfect
knowledge of the white spaces. Thus, we assume that no
PU is present in the frequency bands of interest. Secondly,
we assume that all the SUs consist of a transmitter (Tx)
comprising of nt transmit antennas and a receiver (Rx) com-
prising of nr receive antennas. In this MIMO IC model,
each Tx has only one intended Rx and acts as an interferer
for the rest of the SUs. Further, we make the Gaussian
interference channel assumption in which interference and
noise are modeled as being Gaussian distributed. Thirdly, we
assume that the available spectrum is divided into a countable
number of orthogonal frequency bands. SUs are not restricted
to transmit over a single band and can distribute transmit
power over multiple frequency bands. Each Tx is assumed
to have a total maximum transmit power of Pmax over all
frequency bands and all nt transmit antennas. It is further
assumed that all the users are sharing complete information
and the system is centrally optimized to find the maximum sum
of the mutual information. In this case, a centralized server
obtains information about the topology (e.g., channel gains)
and determines the optimal spatio-spectral power allocation
for all the SUs.

B. System Layout

The system layout is shown in Fig. 1. The maximum
allowable distance between a Tx/Rx pair is denoted by dmax.
dmax is assumed to be a system constant and is defined such
that the minimum average received SNR per receive antenna is
SNRmin dB (assuming no fading or shadowing). The density
of the users is handled by defining a Multi-User Interference
(MUI) factor. MUI represents the expected number of Rx
nodes within a circle of radius dmax centered at any Tx
node assuming a constant density. Increasing the MUI factor
increases the density of interferers and hence increases the
mutual interference. For a fixed MUI and dmax value, the
density (µ) in terms of users per unit area can be evaluated as:
µ = MUI/πd2max. The complete area of interest is assumed
to be a square. To place N users within a square with density
µ, the square should have an area of N

µ , and hence a side length

of
√

N
µ . For each analysis, we place a number of Rx units

uniformly in the chosen square area. Each Tx is then placed
in the circle of radius dmax centered at the corresponding Rx,
as shown in Fig. 1. We simulate this system a number of times
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Fig. 1. System model depicting various Tx-Rx pairs.

to find the ergodic sum-rate and for each simulation we place
the users randomly as described above.

C. Mathematical Notations

Boldface is used to denote matrices and vectors. For a ma-
trix A, A† denotes the conjugate transpose and AT denotes the
transpose. Tr{A} denotes the trace of the matrix A. I denotes
the identity matrix, whose dimensions can be determined from
the context. A ≻ 0 represents that A is Hermitian and positive
semidefinite. The scalar am,n represents the entry in the mth-
row and nth-column of A. For a complex scalar a, ℜ(a) and
ℑ(a) represent the real and imaginary parts of a, respectively,
and a′ represents the conjugate of a. diag{A} denotes a vector
of the diagonal elements of A and diag{A} ≽ 0 means that
all the diagonal elements of A are non-negative.

III. SUM-RATE OF COGNITIVE MIMO IC

In this section, we briefly formulate the sum-rate maximiza-
tion problem of cognitive MIMO ICs. It should be noted that
this problem was first formulated in [23] by incorporating DSA
in multiuser MIMO networks.

A. Defining the Variables

We consider an IC consisting of N mutually interfering
SUs, which are indexed by 1, 2, . . . , N . In this analysis,
it is assumed that the transmitters have full channel state
information. Let the available spectrum be divided into m
frequency bands, indexed by 1, 2, . . . ,m. Let us denote the
MIMO link from the Tx of the jth SU to the Rx of the ith

SU to be Lji. Let the matrix Hl
ji ∈ Cnr×nt denote the channel

matrix of link Lji in the lth frequency band. Let the matrix Ql
i

be the covariance matrix of the zero-mean Gaussian transmit
symbol vector xli of the ith SU in lth frequency band, i.e.,
Ql

i = E{xli.x
l†
i }. Further denote ρlji as the signal-to-noise

ratio per unit transmit power in frequency band l if j = i,
or the interference-to-noise ratio per unit transmit power if
j ̸= i. It is also assumed that each Tx in the network is
subject to the maximum transmit power constraint, i.e., the
total power transmitted over nt transmit antennas and all m
frequency bands should be less than or equal to Pmax. Let

Rl
i represent the covariance matrix of the interference plus

noise observed at the ith Rx node in the lth frequency band.
Assuming interference plus noise to be Gaussian distributed,
it can be computed as:

Rl
i =

N∑
j=1
j ̸=i

ρljiH
l
jiQ

l
jHl†

ji + I. (2)

B. Sum-rate of Cognitive MIMO IC

We begin by analyzing the capacity of a single MIMO
link which can be computed as Ci =

∑m
l=1 log2 det(I +

ρlii(R
l
i)

−1Hl
iiQ

l
iH

l†
ii). Since Ql

i ≻ 0, it can be expressed
as Ql

i = Ul
iΛ

l
iU

l†
i . Defining Ĥ

l

ii = Hl
iiU

l
i, the capacity

of the single MIMO link in this case can be written as
Ci =

∑m
l=1 log2 det(I + ρlii(R

l
i)

−1Ĥ
l

iiΛ
l
iĤ

l†
ii). As Qi ≻ 0,

it leads to the following two very important properties which
are instrumental in the further simplification of the problem
formulation:

1) The distributions of Ĥ
l

ii and Hl
ii are same [24].

2) All the eigenvalues of Ql
i, i.e. all the diagonal elements

of Λl
i, are real and positive.

Due to these properties, it is sufficient to consider Λi instead
of Qi in the problem formulation. It should, however, be noted
that the instantaneous sum-rate of the original and transformed
formulation is not necessarily the same. It is only the ergodic
sum-rate that remains the same. Using this information, the
problem of cognitive MIMO ergodic sum-rate maximization
can now be formulated as:

max
∑N

i=1 Ci

s.t. Ci =
∑m

l=1 log2 det(I + ρliiR
l
i

−1
Ĥ

l

iiΛ
l
iĤ

l†
ii)

Rl
i =

∑N
j=1
j ̸=i

ρjiĤ
l

jiΛ
l
jĤ

l†
ji + I∑m

l=1 Tr{Λl
i} ≤ Pmax, diag{Λl

i} ≽ 0
1 ≤ i ≤ N, 1 ≤ l ≤ m.

(3)

The above formulation basically finds the power transmitted
by each user in each channel-mode in each frequency band that
maximizes the sum-rate. It should be noted that the channel-
modes of each user forming an IC are not necessarily the same
as the channel-modes of its no-interference counterpart. This
problem is non-linear non-convex and hence its global optimal
solution can not be derived analytically. Even the popular
local optimization algorithms, such as gradient based search
do not guarantee global optimal solution. To overcome this
problem, we now develop a BB/RLT based global optimization
algorithm which has a guaranteed convergence to the global
optimal solution.

IV. THE BB/RLT GLOBAL OPTIMIZATION ALGORITHM

BB/RLT was proposed in [25], and later extended in [26],
for solving the sum-rate maximization problem of the single
band MIMO IC. We now extend this algorithm to encompass
the cognitive MIMO IC case in the general formulation
presented in [26]. It should be noted that the RLT would
be different in this case because of the different problem
formulation. However, the BB strategy would remain the same



as that of [26] and is omitted here to save space. We begin
our discussion by presenting a brief overview of BB/RLT.

A. Brief Overview of BB/RLT

The basic idea of BB/RLT is to first find the upper bound
(UB) and the lower bound (LB) to the optimal sum-rate
by constructing a linear programming relaxation (LPR) of
the original non-linear (NL) problem and then tightening
the bounds by employing the BB strategy [25], [26]. While
constructing the LPR, all the NL terms in the objective
function and the constraints are replaced by linear variables
by introducing suitable linear constraints, thereby relaxing the
feasible region. The optimal objective function value of this LP
thus serves as an upper bound (UB) to the original NL problem
(since it is a maximization problem). If the optimal solution of
this relaxed LP is feasible to the original NL problem, it acts
as a lower bound (LB) to the globally optimal value (since it is
sub-optimal to the original NL problem in general). Otherwise,
it can be used as a starting point to find a feasible solution by
local search. After finding the UB and LB, the BB strategy is
employed to partition the search space so that both the largest
UB and LB approach the global optimum. When the largest
UB and the LB are within some threshold, ϵ, the BB/RLT is
complete and yields a LB to the global optimum that is within
ϵ of the true global optimum [25], [26].

Constructing an LPR: We begin by defining the following
new variables to linearize the expression of Ci:

xl
i = det(Rl

i + ρliiĤ
l

iiΛ
l
iĤ

l†
ii);u

l
i = ln(xl

i);

yli = det(Rl
i); v

l
i = ln(yli).

(4)

Ci can be expressed in terms of the new variables as: Ci =∑m
l=1

1
ln 2 (u

l
i − vli). The constraints given by (4) are added to

the problem formulation given by (3). ul
i and vli are logarithmic

functions of the form w = ln z, where z ∈ [zLB zUB ]. Since,
xl
i and yli are dependent upon Λl

i, their LB and UB can be
calculated by evaluating their expressions at the LB and UB
of Λl

i respectively. A convex polygonal outer approximation
is used to linearize the logarithmic function [26]. As shown
in Fig. 2, the convex region is defined by the tangents at
(zLB , ln zLB), (zγ , ln zγ) and (zUB , ln zUB), and the chord
joining (zLB , ln zLB) and (zUB , ln zUB), where zγ is the
z-coordinate of the point of intersection of the tangents at
(zLB , ln zLB) and (zUB , ln zUB), which is given by:

zγ =
zLBzUB(ln zUB − ln zLB)

zUB − zLB
. (5)

The convex region defined by these four segments can be
expressed by the following linear constraints:

zLBw − z ≤ zLB(ln zLB − 1),
zγw − z ≤ zγ(ln zγ − 1),
zUBw − z ≤ zUB(ln zUB − 1),
(zUB − zLB)w + (ln zLB − ln zUB)z ≥
zUB ln zLB − zLB ln zUB .

(6)

After linearizing ul
i and vli, we linearize xl

i and yli. The
expressions for xl

i and yli are quite similar and this similarity
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Fig. 2. Polyhedral approximation of w = ln z.

can be established by substituting Rl
i in (4):

xl
i = det

(∑N
j=1

(
ρljiĤ

l

jiΛ
l
jĤ

l†
ji + I

))
△
= detSl

i,

yli = det

(∑N
j=1
j ̸=i

(
ρljiĤ

l

jiΛ
l
jĤ

l†
ji + I

))
△
= detRl

i.
(7)

Keeping in mind this similarity, we illustrate the linearization
process for only xl

i, and the results for yli can be inferred
directly. For the purpose of illustration, we assume that Tx
and Rx nodes of each user have two antennas each. Since
Λl
j (∀ j, l) is an nt×nt (= 2×2) matrix, it can be expressed

as:

Λl
j =

[
λl
j1 0
0 λl

j2

]
, (8)

where λl
j1 and λl

j2 are the fractions of power transmitted by
the jth user over the two Eigen-modes of the channel in the
lth frequency band. To simplify the expressions for xl

i and
yli (given by (7)), let us define H̃

l

ji =
√

ρljiĤ
l

ji. Sl
i can now

be expressed as (9). Taking the determinant of Sl
i, x

l
i can be

expressed as (10). The expression for yli is similar to that for
xl
i with the only difference being that the terms corresponding

to ith users are not included in the summations.
From (10) we observe that xl

i is a quadratic polynomial
with three types of quadratic terms, viz., λl

j1λ
l
k1, λl

j2λ
l
k2 and

λl
j1λ

l
k2. It is important to note that λl

j1λ
l
k1 is the same as

λl
k1λ

l
j1 and hence the number of unique quadratic terms for

this category is
∑m

l=1

∑N
j=1 j = mN

2 (N + 1). The same
argument holds for λl

j2λ
l
k2. The number of unique terms

for λl
j1λ

l
k2 (∀ j, k, l) is mN2, which makes the total

number of quadratic terms in (10) equal to mN(2N + 1).
Each of these quadratic terms is replaced by a new variable:
Γl
j1k1 = λl

j1λ
l
k1,Γ

l
j1k2 = λl

j1λ
l
k2 and Γl

j2k2 = λl
j2λ

l
k2.

These equalities are relaxed by including the following linear
inequalities called bounding factor constraints (illustrated for
Γl
j1k2), for each non-linear term:

Γl
j1k2 − λl

j1LBλ
l
k2 − λl

j1λ
l
k2LB ≥ −λl

j1LBλ
l
k2LB

Γl
j1k2 − λl

j1UBλ
l
k2 − λl

j1λ
l
k2LB ≤ −λl

j1UBλ
l
k2LB

Γl
j1k2 − λl

j1LBλ
l
k2 − λl

j1λ
l
k2UB ≤ −λl

j1LBλ
l
k2UB

Γl
j1k2 − λl

j1UBλ
l
k2 − λl

j1λ
l
k2UB ≥ −λl

j1UBλ
l
k2UB

(11)

This completes LPR construction of the original problem (3)



Sl
i =

[
1 +

∑N
j=1 λ

l
j1(h̃

l
ji)11(h̃

l
ji)

′
11 + λl

j2(h̃
l
ji)12(h̃

l
ji)

′
12

∑N
j=1 λ

l
j1(h̃

l
ji)11(h̃

l
ji)

′
21 + λl

j2(h̃
l
ji)12(h̃

l
ji)

′
22∑N

j=1 λ
l
j1(h̃

l
ji)21(h̃

l
ji)

′
11 + λl

j2(h̃
l
ji)22(h̃

l
ji)

′
12 1 +
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j=1 λ

l
j1(h̃

l
ji)21(h̃

l
ji)

′
21 + λl

j2(h̃
l
ji)22(h̃

l
ji)

′
22

]
(9)

xl
i = 1 +

∑N
j=1

(
(h̃l

ji)11(h̃
l
ji)

′
11 + (h̃l

ji)21(h̃
l
ji)

′
21

)
λl
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j=1

(
(h̃l

ji)12(h̃
l
ji)

′
12 + (h̃l

ji)22(h̃
l
ji)

′
22

)
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j2+∑N
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∑N
k=1

(
(h̃l

ji)11(h̃
l
ji)

′
11(h̃

l
ki)21(h̃

l
ki)

′
21 − (h̃l
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l
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l
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′
11(h̃

l
ki)21

)
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l
k1+∑N

j=1
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(
(h̃l
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l
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′
12(h̃

l
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l
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′
22 − (h̃l

ji)22(h̃
l
ji)

′
12(h̃

l
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l
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)
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j2λ
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k2+∑N

j=1

∑N
k=1

(
(h̃l

ji)11(h̃
l
ji)

′
11(h̃

l
ki)22(h̃

l
ki)

′
22 + (h̃l

ji)21(h̃
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′
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l
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′
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ji)11(h̃
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′
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′
21)ℑ((h̃l

ji)12(h̃
l
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′
22)

)
λl
j1λ
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k2

(10)

and the corresponding LP can be expressed as:

max
∑N

i=1 Ci

s.t. Ci =
∑m

l=1
1

ln 2 (u
l
i − vli),

Polygonal approximation of ul
i and vli given by (6),

Linear expressions for xl
i and yli (using (10)),

Bounding constraints for Γl
j1k1, Γl

j1k2 and Γl
j2k2 (11),∑m

l=1 Tr{Λl
i} ≤ Pmax, diag{Λl

i} ≽ 0
1 ≤ i ≤ N, 1 ≤ l ≤ m.

(12)
The LPR essentially relaxes the feasible region of the

original NL problem (3) and hence the optimal objective
function value of the LP (12) serves as an UB to the optimal
sum-rate. Since the LP is subject to the same power constraint
as the original NL problem (3), the optimal solution to the
LP is also a feasible solution to (3). In general, this feasible
solution is not optimal to the original problem (3) and the
corresponding objective function value of (3) yields a LB to
the optimal sum-rate. BB strategy is then employed to partition
the search space so that both the largest UB and LB approach
towards the global maximum (as explained in [25], [26]).

V. NUMERICAL RESULTS

The optimal sum-rate of cognitive MIMO IC is compared to
two special cases, viz., no-interference (NI) and the IA bound,
for different system parameters. The NI case is a hypothetical
case and assumes that each SU is isolated from the other SUs
in the network. This provides an upper bound to the optimal
results. The IA bound represents the sum-rate achievable by
performing IA. It is simply evaluated as half the sum-rate of
the NI case. It should be noted that the IA bound is included
just for the purpose of comparison and the feasibility of IA in
limited signalling dimensions is still an open problem.

The channel model is assumed to be a combination of large
scale and small scale fading components. On the large scale,
we assume that channel suffers from an exponential path loss
with a path loss exponent of 3 and from log-normal shadowing
with a standard deviation of 1 dB. Small scale fading effects
are modeled as Rayleigh distributed. Antennas at both the Tx
and Rx of all the users are assumed to be independent in
terms of small-scale fading but perfectly correlated in terms of
lognormal shadowing. The interference power is controlled by
varying the MUI factor (high MUI means high interference
power). Pmax is set to one without loss of generality.
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Fig. 3. Comparison of sum-rates of the single band and multiple band
systems in low (MUI = 1) and high (MUI = 5) interference scenarios
(nt = nr = 2).
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Fig. 4. Comparison of the sum-rates of single and multiple band systems
for the case when MUI = N (nt = nr = 1).

In Fig. 3, we present the sum-rates achievable by the
proposed optimal power allocation in low (MUI = 1) and
high (MUI = 5) interference scenarios. As expected, the sum-
rate achievable in low interference scenario is higher than that
achievable in the high interference scenario for both the single
band and the multi-band MIMO IC. Another interesting ob-
servation is that the sum-rate scales better with the increase in
frequency bands in the high interference scenario as compared
to the low interference scenario. This means that the percent-
age increase in the sum-rate achieved by increasing the number
of bands from one to two is higher in the high interference
scenario as compared to the low interference scenario. This
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Fig. 5. Comparison of the sum-rates of single and multiple band systems
for the case when MUI = N (nt = nr = 2).
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Fig. 6. Comparison of the sum-rates of single and multiple band systems at
various values of SNRmin (MUI = N = 4, nt = nr = 1).

highlights the importance of interference avoidance in the high
interference scenarios. We also note that the rate of decrease of
sum-rate reduces considerably for N > MUI . This is because
the number of dominant interferers (lying inside the circle of
radius dmax) is constant for N > MUI , whereas, the less
dominant interferers (lying outside the circle) continues to
grow with N . It should also be noted that IA is most useful in
the cases when all the users interfere strongly with each other.
Therefore, we consider MUI = N in all our subsequent cases
to facilitate a fair comparison between the optimal power sum-
rate and the IA bound.

In Fig. 4, we consider a SISO IC and compare the optimal
sum-rate to the NI capacity and the IA bound. The first
observation is that the NI capacity per frequency band reduces
when we increase m from 1 to 2. This is due to the fact that
doubling the number of bands does not allow a doubling of
capacity, thus the capacity per frequency band goes down.
The optimal sum-rate per user per frequency band is observed
to be higher than the IA bound for a small to moderate
number of SUs. The per user sum-rate decreases with the
increase in interference power in the optimal power control
case but remains constant in the IA case. Due to this, IA
starts performing better than the proposed optimal method
after a certain cross-over point (referred henceforth as NCO).
This highlights the effectiveness of IA in high interference
scenarios. Another interesting observation is that the cross-
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Fig. 7. Comparison of the sum-rates of single and multiple band systems at
various values of SNRmin (MUI = N = 4, nt = nr = 2).
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Fig. 8. The number of SUs allowed to transmit in the SISO IC for
SNRmin = 1dB and SNRmin = 30 dB (Nt = Nr = 1, MUI = N ).

over point NCO is higher when there are a higher number
of orthogonal frequency bands available for transmission.
This means that the performance of the proposed technique
improves significantly with the increase in the number of or-
thogonal frequency bands. This is an important result from the
CR perspective, where we expect to have several orthogonal
frequency bands for the use of SUs. A similar comparison
is carried out for a 2 × 2 cognitive MIMO IC in Fig. 5. In
addition to the already mentioned results, we observe that
the performance of the optimal power control technique is
better in this case than the SISO IC case due to the presence
of orthogonal spatial channels. In particular, the cross-over
points NCO are higher in this case than their counterparts in
the SISO IC case. Thus, the presence of orthogonal spatial
and/or spectral channels improves the interference avoidance
capability of the power control technique. We also note that
the sum-rate scales better with the increase in the number of
orthogonal frequency bands in the high interference case.

In Fig. 6, we study the effect of SNRmin on the perfor-
mance of our proposed technique and its comparison to the
IA bound. We consider a four-user SISO IC and compare the
optimal results with the NI capacity and the IA bound. We
observe that the proposed power control technique performs
better than the IA bound in the low SNR regime. This is due
to the fact that the sum-rates achievable in IA are highly sub-
optimal in the low SNR regime. As we increase SNRmin,



IA starts performing better than the proposed technique after
a certain SNRmin value (referred henceforth as SNRCO).
We also observe that the SNRCO is higher when there are
multiple bands for transmission. This reiterates the fact that the
performance of the optimal power control technique improves
as compared to IA bound when there are more orthogonal
frequency bands available for transmission. Repeating the
same comparison for the 2× 2 cognitive MIMO IC in Fig. 7,
we observe that the cross-over points, SNRCO, are higher in
this case as compared to the SISO case. Another interesting
observation from Fig. 6 and 7 is that the sum-rate scales better
with the increase in the number of orthogonal frequency bands
for the optimal power control case in the high SNR regime.
To explain this behavior, we briefly look at the fairness of
proposed power allocation scheme in the SISO IC in Fig. 8.
In particular, we calculate the number of SUs that are allowed
to transmit at least 10% of Pmax in the SISO IC. We first
observe that fewer SUs are allowed to transmit in the high
SNR regime as compared to the low SNR regime. This
is due to the fact that the interference links are stronger in
the high SNR regime (relative to the noise power) and it
is optimal to turn-off more SUs to maximize the sum-rate
as compared to the low SNR regime (analogous to results
presented in [27] for symmetric ICs). More importantly, we
note that the percentage increase in the number of ‘transmit-
ting’ SUs by adding an extra frequency band is higher in
the high SNR regime. For example, the percentage increase
in the number of ‘transmitting’ SUs (for 4-user SISO IC)
is 45% in the 30 dB SNRmin case as opposed to 30% in
the 1 dB SNRmin case. A larger increase in the number of
‘transmitting’ SUs leads to a better capacity scaling in the
high SNR regime. It should be noted that the fairness of
resource allocation in the proposed technique requires further
investigation and will be discussed in a separate publication.
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VI. CONCLUSION

In this paper, we have developed a global optimization
algorithm to find the maximum sum-rate achievable by em-
ploying spatio-spectral power control in the cognitive MIMO
IC treating interference as Gaussian noise. We have shown
that this spatio-spectral power control yields higher sum-rate
than that of IA in low interference and low SNR scenarios.
The performance of the proposed power control technique
improves with an increase in the number of orthogonal fre-
quency and/or spatial channels. These results are promising
from the CR perspective, where SUs typically operate in a
relatively low SNR regime and are generally expected to
have multiple frequency bands available for transmission. We
have also shown that the optimal power control technique
achieves better sum-rate scaling (with an increasing number
of orthogonal frequency bands) in the high interference and
high SNR scenarios.
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