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Abstract—Due to their inherent ability to operate without
the channel state information (CSI), non-coherent receivers are
highly suitable for ambient backscatter devices, allowing them
to co-exist alongside the non-cooperative primary users. In this
work, we analyze the performance of an ambient backscatter
system employing non-coherent detection in a time-selective
fading channel (modeled using the first order autoregressive (AR)
process). We characterize the bit error rate (BER) of a multi-
antenna (MA) receiver by deriving the expression for antenna
gain achievable after the direct link (DL) cancellation. In addition,
the analysis also captures the additional angular resolution in a
MA receiver with more than two antennas, which allows us to
ensure reasonable performance even when the angles of arrival
(AoAs) of the DL and backscatter link (BL) are almost similar.

Index Terms—Ambient backscatter, non-coherent detection,
auto-regressive model, time-selective fading, bit error rate.

I. INTRODUCTION

Ambient backscatter has emerged as a promising technology
for the modern wireless networks due to its enormous potential
in supporting numerous applications for the Internet-of-Things
(IoT) paradigm [1]. Given the wide scope of these applications,
it is natural to expect a variety of deployment scenarios for the
backscatter devices. If the underlying statistical conditions for
the scenarios are fundamentally different, a receiver optimized
to work well in one scenario may not work well for the others.
In the context of this work, the receiver optimized for slowly-
varying channels, assuming the knowledge of the CSI, may not
work well in fast-varying channels due to the non-availability of
CSI in those scenarios. Since vehicular networks offer potential
use cases for backscatter communications, it is imperative to
separately investigate the performance of the system under such
fast-varying channels. As will be discussed shortly, this case
has not received much attention in the literature (which has
mostly focused on slow fading scenarios) [1]. Further, since
channel acquisition is complicated in time-selective channels,
non-coherent detection is an attractive choice for this setup.
Therefore, the main aim of this work is to investigate the BER
performance of a non-coherent receiver under a time-selective
fading channel.

A. Related Work

The existing literature on non-coherent ambient backscatter
is very limited, mainly dealing with slow fading channels
modeled under the assumption of block fading [2]–[5]. The
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maximum-likelihood (ML) detection of a non-coherent ambient
backscatter system is analyzed in [2]. Meanwhile in [3], a non-
coherent detector is designed to avoid the DL interference by
transmitting over the null sub-carriers in orthogonal frequency
division multiplexing (OFDM). Blind channel estimation
techniques for the ambient backscatter setup are investigated in
[4], [5]. The performance of these blind estimation techniques
depend on their convergence rate, and hence may not be suitable
for time-selective fading. These previous studies in [2]–[5],
however, do not jointly investigate the non-coherent detection
and time-selective fading. Perhaps the most relevant prior art is
our own work [6], where we analyzed non-coherent detection
for a dual-antenna receiver under the assumption of independent
fading across the ambient symbols. However, the current paper
expands the scope of this problem significantly by considering
a general multi-antenna receiver and a time-selective fading
channel. As discussed shortly, the inclusion of general multi-
antenna setting yields many insights that are not quite possible
with a restrictive dual-antenna setting.

B. Contributions

In our non-coherent backscatter setup, the time-selective
fading channel is modeled as a first order AR process, and
the multi-antenna receiver is considered to have an arbitrary
number of antennas. The receiver architecture derived using
the direct averaging of the received signal samples is easier
to implement, while being analytically tractable. The main
contributions of our work can be summarized as follows:

1) The joint treatment of non-coherent detection and time-
selective fading for an ambient backscatter system,

2) The DL cancellation and the subsequent scalar detection
problem for a general antenna receiver.

3) The derivation of the closed form expression for antenna
gain and the additional discussion on angular resolution
achievable with antenna elements more than two.

To improve the BER performance of the system, the receiver
performs the DL cancellation and the subsequent symbol
detection by tracking the AoAs of the DL and BL links, which
are large scale parameters. In addition to DL cancellation,
multiple antennas can be used to obtain antenna gain which
improves the BER of the system. Further, it is possible to
operate this system even for similar AoAs of the two links, due
to the additional angular resolution achieved when the number
of receive antennas are higher than two. Also, the average BER
is observed to improve with increasing time-domain correlation
of the fading, while it reaches an asymptotic value with the
increasing sample-size.



II. SYSTEM MODEL

A. System Setup and Channel Model

The backscatter system in our current setup has three devices:
ambient power source (PS), backscatter transmitter (BTx), and
receiver (Rx), as illustrated in Fig. 1a. The channel considered
in the work is flat Rayleigh faded whose coherence time is
of the order of duration of each ambient symbol, with spatial
correlation at the Rx. The received signal is composed of two
elements, the DL coming from the ambient PS, and the BL
reflected from the BTx, with their respective AoAs given by
θ1 and θ2. Both the PS and BTx can be in motion, due to
which the channel gain of the three links (including the link
from PS to BTx) will be changing with time. As shown in
[7], ambient backscatter can achieve communication with a
far away receiver like BS if the PS is not too far from the
BTx and the receiver can find a way to separate the two links,
which is the primary motivation for the setup shown in Fig
1a. Emerging applications that motivate the consideration of
time-selective fading channels for ambient backscatter include
smart fabrics where tags/sensors are integrated into garments
for monitoring vital signs [8], and smart roads with sensors
deployed on the traffic signs. The impulse response of the
channel at Rx, corresponding to the DL and BL links, in terms
of the dominant non-line-of-sight (NLOS) path and the Rx
array response can be given by [9], [10]:

h(t) =

N∑
n=1

cne
jφn−j2πcτn/λ+j2πfd cosψnt

︸ ︷︷ ︸
h0(t)

a(θ)δ (t− τ̄) , (1)

where the NLOS path can be assumed to be a combination
of N independent and non-resolvable sub-paths due to the
local scatterers around the transmitter. The nth sub-path is
characterized by the gain cn, the phase offset φn, the time
delay τn, the maximum Doppler spread (DS) fd, and the angle
of departure (AoD) ψn at the transmitter. In the equation,
δ represents the delta function while τ̄ is the mean of the
individual delays τn of the sub-paths. The remaining parameters
a(.) and θ are the Rx array response vector, and AoA of the
NLOS path, respectively. The phase offset φn of each sub-path
is uniformly distributed over [0, 2π), and the additional phase
offset resulting from the path-delay τn can also be shown to
be uniformly distributed over [0, 2π) since the frequency of
operation is very high. Applying the central limit theorem
(CLT) to the N sub-paths, the magnitude of the variable h0(t)
can be shown to follow Rayleigh distribution. This channel
environment is illustrated in Fig. 1b. The channel described
here is valid when one of the PS or BTx or both are mobile,
and the receiver is located above the rooftops (such as BS)
resulting in spatial correlation across the antennas. The channel
of the PS-BTx link will be similar to h0(t) with additional DS
coming from the local scatterers around BTx. The receiver of
this system makes use of the fact that the varying rate of the
AoA of the links is much slower compared to that of h0(t)
[11], and thereby tracks it to improve the BER of the system.

The auto-correlation function (ACF) of the fading process
for the DL and BL links is given by

Eθn,τn,ψ̄ [h0(t)h∗0(t+ td)] = J0(2πfdtd). (2)

v
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Fig. 1: (a) System model for the ambient backscatter setup, and (b)
Illustration of the time-selective fading channel.

This result obtained under the assumption of uniformly dis-
tributed azimuthal AoD and unit sum energy of the sub-paths
is known as Clarke’s reference model. Similarly, the ACF for
the PS-BTx link is given by J0(2πfdtd)J0(2πafdtd), where a
is the ratio of the DS at BTx and PS. To simplify the analysis,
the time-selective fading channel in our work is modeled as a
first order AR process, and the fading gain corresponding to
each signal sample can be represented as [12], [13]:

h[n] = ρ h[n− 1] +
√

1− ρ2 g[n], (3)
where h[n] and h[n− 1] are the channel gains in the current
and previous time periods, g[n] is the complex white Gaussian
noise process with variance σ2

h, and ρ ∈ [0, 1) is the correlation
between the fading coefficients of the consecutive symbols.
Depending on the link, the correlation factor ρ is given by
either J0(2πfdTs) or J0(2πfdTs)J0(2πafdTs), where Ts is
the symbol duration. The value of ρ determines the rate at
which the current channel coefficient de-correlates over time.
Interested readers can refer to [14] for additional details on
the system setup and the channel model.

B. Signal Model

Since the data rate of most IoT applications is rather small,
it is reasonable to assume that the data rate of backscatter
is lower compared to that of the ambient symbols. Under
this assumption, a single variable is enough to represent the



backscatter data for a signal sample set of size N . The signal
at the multi-antenna receiver with Mr ≥ 2 is given by:

y[n]=


y0[n]
y1[n]

...
yMr−1[n]

=hr[n]


1
ejφ1

...
ej(Mr−1)φ1

x[n]

+ αbhb[n]ht[n]


1
ejφ2

...
ej(Mr−1)φ2

x[n]+


w0[n]
w1[n]

...
wMr−1[n]

, (4)

where x[n] is the ambient symbol sequence in complex base-
band, w[n] is the additive complex Gaussian noise, hr[n], hb[n]
and ht[n] are i.i.d. zero mean complex Gaussian channel
coefficients with variance σ2

h, b is the backscatter data, α
is related to the parameter Γ1 (the reflection coefficient of
the tag when bit ‘1’ is transmitted) of the BTx node, and the
phase offset φi between consecutive antenna elements for each
link in a linear uniform antenna array is given by 2π

λ d cos θi.
The channel coefficients hr[n], hb[n] and ht[n] are modeled
using the AR process of order 1, each having a different
correlation factor given by ρr, ρb and ρt, respectively. Since
non-coherent detection does not require the CSI, the channel
gains hr[n], hb[n] and ht[n] are unknown at the Rx.

The null and alternate hypotheses of the binary hypothesis
testing problem are denoted as H0 and H1, respectively. The
BTx modulates the backscatter data using the binary on-off
keying (OOK) scheme. As is generally the case, the ambient
symbol sequence x[n] is assumed to be i.i.d., with unit energy
on average. We also assume that the noise energy σ2

n, the
average channel energy σ2

h, and the correlation factors ρr, ρb,
and ρt are known at the receiver. In fact, they can be perfectly
estimated with a long observation interval under the assumption
that they remain constant, which is true as they are large-scale
parameters. The test statistic (TS) for the signal detection is
given by the mean of the received signal samples, and can
be mathematically expressed as Z = 1

N

∑N
n=1 y[n]. In the

expanded version of the work, this receiver architecture is
shown to be robust to errors in symbol timing synchronization,
which is one of the main reasons for adopting it [14].

III. SIGNAL DETECTION AND BIT ERROR RATE

In this section, we first discuss the proposed DL cancellation
technique, then derive the conditional distributions of the
resultant signal, and ultimately the BER of the receiver.

A. Effective Signal and Antenna Gain

The signals impinging on the neighboring antenna elements
are phase shifted versions of the signal at the first antenna in
addition to the independent additive noise. The interference of
the DL can be canceled by reversing the DL phase offset at
each antenna starting from the second element, and subtracting
the resultant signal with that at the first antenna as follows:

ỹ[n] =

 e−jφ1y1[n]− y0[n]
...

e−j(Mr−1)φ1yMr−1[n]− y0[n]



= ãαbhb[n]ht[n]x[n] + w̃[n], (5)
where the resultant vectors ã and w̃[n] are given by:

ã =


2 sin(φ2−φ1

2 )ej(
φ2−φ1

2 )

...
2 sin(Mr − 1)(φ2−φ1

2 )ej(Mr−1)(
φ2−φ1

2 )

 ,

w̃[n] =

 e−jφ1w1[n]− w0[n]
...

e−j(Mr−1)φ1wMr−1[n]− w0[n]

 . (6)

The covariance matrix of the resultant noise vector w̃[n] is:

KW̃ = σ2
nK̂W̃, where K̂W̃ =

2 1 . . . 1
...

...
. . .

...
1 1 . . . 2

 , (7)

which means that the resultant noise after the DL cancellation
is correlated. The vector detection problem can be converted to
scalar detection by appropriately designing the weight vector.
The effective scalar signal samples for the averaging operation
are obtained by the following steps: 1) Whiten the additive noise
with the linear transformation K̂

− 1
2

W̃
, and 2) Project the output

of the first step along the direction of resultant antenna response
K̂
− 1

2

W̃
ã. The combined weight vector of the two operations is

r =
K̂−1

W̃
ã

|K̂
− 1

2
W̃

ã|
, and the effective signal after these steps is:

yeff [n] = r∗ãαbhb[n]ht[n]x[n] + r∗w̃[n]. (8)
Henceforth, the amplitude gain r∗ã and the effective additive
noise r∗w̃[n] in (8) are denoted as µ and v[n], respectively.
The antenna gain (SNR) due to multiple antennas is given by
ã∗K̂−1

W̃
ã. This procedure to generate the scalar sample yeff [n]

maximizes the SNR of the signal, and in addition the resultant
sample yeff [n] is a sufficient statistic for the latter detection
procedure. It can be further shown that this procedure also
minimizes the mean square error for the signal estimation,
and hence is known as linear minimum mean squared error
estimation (MMSE) [15]. The phase-offset components ejφ1

and ejφ2 of the two links can be estimated from the received
signal by formulating a parameter estimation problem. However,
this is beyond the scope of the current work, and hence they
are assumed to be perfectly known at the receiver. The sample
average Z = 1

N

∑N
n=1 yeff [n] is used as the new test statistic.

Lemma 1. The antenna gain G = ã∗K̂−1
W̃

ã of the receiver is:

G = Mr−
1

Mr
− 2

Mr

sin((Mr−1)φ2−φ1

2 )

sin(φ2−φ1

2 )
cos(

Mr

2
(φ2 − φ1))

− 1

Mr

sin2((Mr−1)φ2−φ1

2 )

sin2(φ2−φ1

2 )
. (9)

Proof: See Appendix A.
For notational simplicity, the antenna gain is represented as

a single variable G without any input arguments even though
it is a function of the two phase offsets (and hence the AoAs).

Remark 1. The antenna gain for a dual-antenna Rx simplifies
to G = 2 sin2(φ2−φ1

2 ), which is zero when the AoAs of the
DL and BL links are almost the same. On the other hand, the
antenna gain G for a Rx with Mr > 2 equals (1− 1

Mr
)(Mr−2),



which is non-zero even when the two AoAs are almost the same
(in a limiting sense). Hence, additional angular resolution is
obtained with Mr > 2, which is beneficial for the scenarios
where the AoAs of the DL and BL links are very similar.

B. Conditional Distributions and Bit Error Rate

Now, we can derive the conditional distributions from the
effective signal, and then the average BER of the receiver.

Lemma 2. The conditional PDFs of Z for the two hypotheses
H0 and H1 are given by

Hi : Z ∼ CN (0,Vari) , (10)

where Var0 =
σ2
n

N and

Var1 =
G|α|2σ4

h

{
E[|X|2]+ 2ρtρb

1−ρtρb

(
1− 1−ρNt ρ

N
b

N(1−ρtρb)

)
|E[X]|2

}
+σ2

n

N .

Proof: See Appendix B.

Theorem 1. The average BER of the receiver is given by:

P (e)=

∫ π

−π

∫ π

−π

1

8π2

(
1− e−

T
Var1 + e−

T
Var0

)
dθ1dθ2, (11)

where T =ln(Var1
Var0

) Var1Var0
Var1−Var0

is the optimal detection threshold.

Proof: See Appendix C.
Asymptotic BER: Ratio of the variances of H0 and H1 is:

K=1+G|α|2σ4
h{1+

2ρtρb
1−ρtρb

(1− 1−ρNt ρNb
N(1−ρtρb)

)
|E [X]|2

E [|X|2]
}SNR.

(12)
From this, the asymptotic conditional BER as SNR→∞ is:

P asym(e|φ1, φ2)
(a)
=

1

2
(1−K

−1
K−1 +

1

K

1

1− 1
K )

(b)
= 0, (13)

where (a) results from substituting the expression for T , and
replacing Var1

Var0
with K defined in (12), and (b) follows from the

standard limit lim
x→∞

(x)−1/x−1 = 1, and 1
K → 0 as SNR→∞.

It should be noted that the asymptotic value of K when N→∞
is non-zero. Hence, the BER does not converge to 0.5 as
N→∞, even though the individual variances go to zero.

Remark 2. In case of fast-fading, where the fading gains are
independent across the ambient symbols, the average BER is
only dependent on the expected value of the energy of ambient
symbol. This special case concurs with our analysis in [6].
Alternatively, if the mean value of the ambient symbol is zero
(valid for most modulation schemes), then again the average
BER is dependent only on the expected value of the energy.
Lastly, it can be inferred from the BER expression that the
average BER is a decreasing function of the correlation factor.

The symbol timing recovery is an important component
of the ambient backscatter system, which is omitted in this
document due to space constraints. Interested readers can refer
to the expanded version for additional details [14].

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, the accuracy of our analysis is verified
by comparing with Monte-Carlo simulations. The reflection
coefficient Γ1 is configured appropriately to set the parameter α
that will result in a signal attenuation of 1.1 dB, and the variance
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Fig. 2: (a) BER vs SNR comparison of the Rx with Mr = 2 for
varying correlation ρ and N = 5000, (b) BER vs N comparison of
the Rx with Mr = 2 for varying correlation ρ with SNR = 20dB.

of the fading gain σ2
h is set to 1. Unless explicitly specified

for the particular plot, the values of ρr, ρb and ρt are all
considered equal and represented as ρ. The BER performance
with increasing SNR for different values of ρ is shown in Fig.
2a, where it can be seen that the BER improves with increasing
ρ value. Likewise, the BER performance with increasing N
for varying ρ is shown in Fig. 2b, and interestingly the BER
increases and saturates quickly with increasing N . However,
as expected, there is an increasing mismatch between the
simulated and theoretical results of BER at lower values of N as
the ρ value is increased. This mismatch occurs due to the need
of a larger sample-size N for the averaging operation, so that
the simulation and theoretical results converge with increasing
ρ. The antenna gain with additional antennas is presented in
Fig. 3a, that shows around 8 dB gain with the doubling of
antennas. The simulation result for the analysis in Remark
1, regarding the additional angular resolution achievable with
receive antennas beyond two, is shown in Fig. 3b. For this
comparison, one can assume the AoA θ1 of the DL to be
uniformly distributed between (−π, π], and the AoA θ2 of
the BL to be uniformly distributed with mean θ1 and width
∆θ = 10◦. The results demonstrate that while the BER of the
dual-antenna Rx is close to 0.5, an antenna gain of around 9
dB is achieved with the doubling of antennas.
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Fig. 3: BER vs SNR comparison for changing antenna elements Mr

at the receiver with ρr = 0.5, ρb = 0.75, ρt = 0.38 and N = 2000:
(a) uniformly distributed AoAs, and (b) narrowly distributed AoAs.

V. CONCLUSION

In this paper, we have studied the performance of an ambient
backscatter system by studying the design and BER of a
multi-antenna non-coherent detector under time-selective fading
channels. The receiver architecture configured using the direct
averages of the received signal samples is much simpler
to implement, and also lends tractability to the asymptotic
analysis. Using multiple antennas at the receiver, the strong
DL interference is eliminated and an SNR gain is achieved
by appropriately processing the signal, thereby resulting in a
good BER performance. We have also demonstrated, through
both analytical and numerical results, the additional angular
resolution achievable with more than two receive antennas,
which benefits the scenarios where the DL and BL AoAs are
very similar. Though the BER in the time-selective fading
improves with increasing signal sample-size, it saturates to an
asymptotic value. Additionally, the BER is observed to improve
with increasing temporal-correlation of the fading channel.

APPENDIX

A. Proof of Lemma 1

The antenna gain ã∗K̂−1
W̃

ã of the receiver is dependent on the
inverse of the matrix K̂W̃, for which closed-form expression

can be obtained. The matrix K̂W̃ can be re-written as:

K̂W̃ =IMr−1+JMr−1,

where IMr−1 is an identity matrix, and JMr−1 is an all-
ones matrix whose rank will be one. Therefore, JMr−1 can
be simplified using singular value decomposition (SVD) as
u1σ1v

T
1 , where the unitary matrices are given by u1 = v1 =

−1√
Mr−1

[
1 1 . . . 1

]T
, and the non-zero singular value

σ1 = Mr − 1. Due to the symmetry, this can be re-written in
the form JMr−1 = uuT , where u =

[
1 1 . . . 1

]T
. Now,

according to the Sherman-Morrison formula [16], inverse of
the sum of a invertible matrix A and the outer product uvT is

given by
(
A + uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. Using this,

the inverse of the matrix K̂W̃ can be derived as:

K̂−1
W̃

= IMr−1 −
uuT

1 + uTu
= IMr−1 −

JMr−1

Mr
. (14)

The expression of the SNR gain can be simplified as:
ã∗K̂−1

W̃
ã =

[
e−j(φ2−φ1) − 1 · · · e−j(Mr−1)(φ2−φ1) − 1

]
Mr−1
Mr

−1
Mr

. . . −1
Mr

...
...

. . .
...

−1
Mr

−1
Mr

. . . Mr−1
Mr


 ej(φ2−φ1) − 1

...
ej(Mr−1)(φ2−φ1) − 1


= −SMr−1 − S∗Mr−1 −

SMr−1S
∗
Mr−1

Mr
,

where SMr−1 =
Mr−1∑
i=1

[
eji(φ2−φ1) − 1

]
is the summation of all

the elements in the weight vector. Since, SMr−1 is a geometric
sum it can be simplified, and the sum SMr−1 + S∗Mr−1 and
product SMr−1S

∗
Mr−1 can be derived as following:

SMr−1 + S∗Mr−1 =2
sin((Mr − 1)φ2−φ1

2 )

sin(φ2−φ1

2 )
cos(

Mr

2
(φ2 − φ1))

− 2(Mr − 1)

SMr−1S
∗
Mr−1 =

sin2((Mr − 1)φ2−φ1

2 )

sin2(φ2−φ1

2 )
+ (Mr − 1)2

− 2(Mr − 1)
sin((Mr − 1)φ2−φ1

2 )

sin(φ2−φ1

2 )
cos(

Mr

2
(φ2 − φ1)).

Using these simplifications, the final expression for the SNR
gain G = ã∗K̂−1

W̃
ã can be determined as follows:

G = Mr−
1

Mr
− 2

Mr

sin((Mr−1)φ2−φ1

2 )

sin(φ2−φ1

2 )
cos(

Mr

2
(φ2 − φ1))

− 1

Mr

sin2((Mr−1)φ2−φ1

2 )

sin2(φ2−φ1

2 )
.

B. Proof of Lemma 2

The effective signal yeff [n], given in (8), under H0 is a
complex Gaussian RV with variance σ2

n. Hence, the mean Z
of the received samples under H0 is a complex Gaussian RV
with variance VarMA

0 =
σ2
n

N . On the other hand, observe that
when conditioned on the ambient signal x[n] and hb[n], yeff [n]
under H1 is a complex Gaussian RV. As a result, the mean of
the received samples can also be characterized as a complex
Gaussian, albeit the samples correlated with one another. The



conditional expectation and variance of an individual sample
yeff [n], and the conditional covariance of any two distinct
samples yeff [i] and yeff [j] can be evaluated as:
E [yeff [n]] = µαhb[n]x[n]E [ht[n]] + E [v[n]] = 0,

Var [yeff [n]] = G|α|2|hb[n]x[n]|2Var [ht[n]] + Var [v[n]]

= G|α|2σ2
h|hb[n]x[n]|2 + σ2

n,

Cov [yeff [i], yeff [j]]=G|α|2hb[i]h∗b [j]x[i]x∗[j]Cov[ht[i], ht[j]]

= G|α|2σ2
hρ
|j−i|
t hb[i]h

∗
b [j]x[i]x∗[j].

The conditional expectation and variance of the mean of
samples Z can be evaluated as follows:

E [Z] =
1

N

(
N∑
n=1

E [yeff [n]]

)
= 0,

Var [Z] =
1

N2
(

N∑
n=1

Var [yeff [n]]+
∑
n1 6=n2

Cov [yeff [n1], yeff [n2]])

=
1

N
(σ2
n+G|α|2σ2

h

1

N

∑
1≤n1,n2≤N

ρ
|n1−n2|
t hb[n1]h∗b [n2]x[n1]x∗[n2]︸ ︷︷ ︸

MN

).

The sequence MN is a function of the sum variable of the
ambient sequence x[n], and can be shown to asymptotically
converge to its expectation as below:

E [MN ] =
1

N
E

 ∑
1≤n1,n2≤N

ρ
|n1−n2|
t hb[n1]h∗b [n2]x[n1]x∗[n2]


(b)
= σ2

h

∑
1≤n≤N

E
[
|X|2

]
N

+σ2
h

∑
n1 6=n2

(ρtρb)
|n1−n2| |E[X]|2

N

(c)
= σ2

hE
[
|X|2

]
+ σ2

h

2ρtρb
1−ρtρb

(
1− 1−ρNt ρNb

N(1−ρtρb)

)
|E[X]|2,

where (b) follows from the assumption that the ambient
sequence x[n] is i.i.d. and the expectation of hb[n1]h∗b [n2]

which is given by σ2
hρ
|n1−n2|
b , and (c) follows from the value

of summation
∑

n1 6=n2

(ρtρb)
|n1−n2| given in [14, Lemma 1].

The conditional variance of Z can thus be approximated as:

Var [Z] ≈ 1

N

(
G|α|2σ2

hE [MN ] + σ2
n

)
=
G|α|2σ4

h

N
(E
[
|X|2

]
+

2ρtρb
1−ρtρb

(1− 1−ρNt ρNb
N(1−ρtρb)

)|E [X]|2)+
σ2
n

N
.

C. Proof of Theorem 1

The optimal decision rule for the receiver is evaluated
through the comparison of the conditional PDFs of the null
and alternate hypotheses H0 and H1, which is given by [6]:

ln
[
fZ|H0

(z)
]
≷0

1 ln
[
fZ|H1

(z)
]

− ln (Var0)− |z|
2

Var0
≷0

1 − ln (Var1)− |z|
2

Var1

|z|2 ≷1
0 ln

(
Var1

Var0

)
Var1Var0

Var1 −Var0
,

where z is the mean of signal samples. The value of the optimal
detection threshold T is given by the decision rule.

The decision rule of the optimal detection is only dependent
on |Z|2. The variable |Z|2 is an exponential distributed RV,

whose mean parameter equals the variance of the complex
Gaussian. Assuming that the prior probabilities of the two
hypotheses are equal, the conditional BER can be derived as:
P (e|φ1, φ2)=P (H0)P (e|φ1, φ2,H0)+P (H1)P (e|φ1, φ2,H1)

=
1

2

(
Pr
{
|Z|2 > T |H0

}
+ Pr

{
|Z|2 < T |H1

})
=

1

2
(1− Fexp (T,Var0) + Fexp (T,Var1))

=
1

2
− 1

2
e−

T
Var1 +

1

2
e−

T
Var0 ,

where FExp(x, λ) is the cumulative distribution function of
the exponential RV |Z|2. The conditional BER is a function
of the phase-offsets of the DL and BL links, and the average
BER is obtained by marginalizing the conditional BER over
the variables θ1 and θ2. The assumption here is that θ1 and θ2

are i.i.d. and uniformly distributed over (−π, π], and the final
expression in the result can be obtained by marginalizing over
this range of θ1 and θ2.
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