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Abstract—To maintain tractability, interference field is often
modeled as a homogeneous Poisson Point Process (PPP) in the
analysis of wireless networks. While it provides meaningful first-
order results, it falls short in modeling the effect of interference
management techniques, which typically introduce some form
of spatial interaction among transmitters. In some applications,
such as cognitive radio and device-to-device networks, this
interaction results in the formation of holes in an otherwise
homogeneous interference field. The resulting interference field
can be accurately modeled as a Poisson Hole Process (PHP).
Despite the importance of PHP in modeling wireless networks,
exact characterization of the interference experienced by a typical
node in a PHP is an open problem. In this paper, we introduce a
new approach to modeling the PHP, in which we dissolve the holes
in such a way that it results in an equivalent non-homogeneous
PPP, which is much more amenable to shot-noise analysis. Using
this approach, we derive new lower and upper bounds on the
Laplace transform of interference in a PHP. The new bounds are
compared numerically to the known approaches and are shown
to be very tight under various operational regimes.

Index Terms—Interference modeling, stochastic geometry,
Poisson Hole Process, coverage probability.

I. INTRODUCTION

Stochastic geometry has emerged as an important tool for
the analysis of wireless networks [1]. Initially popular for
the modeling of ad hoc and wireless sensor networks, it
has recently been adopted for the analysis of cellular and
heterogeneous cellular networks as well [2], [3]. Irrespective
of the nature of the wireless network, the interference field is
almost always modeled by a homogeneous PPP to maintain
tractability. While this leads to remarkably simple results for
key performance metrics, such as coverage and rate, it is
not quite suited to model the effect of interference manage-
ment techniques, which often introduce some form of spatial
interaction among transmitters. In this paper, we focus on
spatial separation, where holes (also called exclusion zones)
are created around nodes/networks that need to be protected
from excessive interference [4]. In particular, we assume that
the baseline interference field is a PPP from which holes of a
given radius are carved out. When the locations of the holes
also form an independent PPP, the resulting point process is
usually termed as a PHP, which is the main focus of this paper.

There are numerous instances in wireless networks where
PHP is the more appropriate model for node locations. In
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cognitive radio networks, holes are established around primary
links, which means the secondary transmitters that are not
inside the holes form a PHP. In [5], the performance of
a cognitive ad hoc network is studied under this model.
In addition, PHP also appears in a two tier Heterogeneous
network comprising macro-cells and small cells which op-
erate under the spectrum underlay strategy [6]–[8]. Here,
interference mitigation schemes in a two-tier heterogeneous
network establish holes around the active nodes of the macro-
tier whereas the remaining small cell transmitters form a
PHP. In addition, for underlay D2D communication in cellular
networks, inhibition zones may be created around cellular
links where no D2D transmissions are allowed, thus saving
cellular links from excessive D2D interference. The active
D2D transmitters outside the holes form PHP [9], [10]. In
this regard, cognitive D2D communication in cellular network
when transmitters are powered by harvesting energy from the
ambient interference is studied in [11]. In [12], a Poisson
Cluster Process (PCP) and a PHP are merged to develop a
new spatial model for integrated D2D and cellular networks.
In particular, a modified Thomas cluster process is used to
model device locations where instead of modeling the cluster
centers as a homogeneous PPP, they are modeled as a PHP to
account for the inhibition zones around cellular links.

Although PHP model has wide applicability in wireless
networks, its probability generating functional (PGFL) is not
easy to characterize, which makes its performance analysis
more challenging. There are two main directions taken in
the literature for the analysis of wireless networks mod-
eled by PHPs. The first approach, termed first-order statistic
approximation, approximates PHP by a homogeneous PPP
with the same density [13]. The second approach ignores the
holes altogether to approximate the PHP by its baseline PPP.
This overestimates the interference and the accuracy of the
approximation is a function of system parameters [5], [9]–
[11]. Besides, the PHP is sometimes approximated with a PCP
by matching the first and second order statistics [5]–[7]. The
resulting expressions for performance metrics are usually more
complicated in this case compared to the above two.

Contributions and outcomes. The key contributions of this
paper are the tight provable bounds on the Laplace transform
of interference at a typical node of a PHP. We first consider
only one hole in the interference field; the one that is closest
to the typical node; and derive a lower bound on the Laplace
transform. We then argue that this hole can be dissolved in
such way that the original interference field with a hole can
be equivalently modeled by a non-homogeneous PPP. Using
this insight, we derive a provable upper bound on the Laplace



transform by considering all the holes of a PHP. The tightness
of these bounds is analytically demonstrated by showing that
their ratio is very close to one over a wide range of parameters.
The proposed bounds are also compared numerically with the
existing approaches. Since our bounds are derived without
distorting the structure of holes through approximations, they
work significantly better than any known approach. Further, it
is well known that under Rayleigh fading, coverage probability
reduces to being the Laplace transform of interference [13],
which means these results also provide provable bounds on
the coverage probability of a typical node in a PHP.

II. NETWORK MODEL

A. System Model
We consider a wireless network that is modeled by a

PHP in R2. A PHP can be formally defined in terms of
two independent homogeneous PPPs �1 and �2, where �2

represents the baseline PPP from which the holes are carved
out and �1 represents the locations of the holes. Let the
densities of �1 and �2 be �1 and �2, respectively, with
�2 > �1. Denoting the radius of each hole by D, the region
covered by the holes can be expressed as

⌅D ,
[

y2�1

b(y, D), b(y, D) ⌘ {x : kx� yk < D}. (1)

The points of �2 lying outside ⌅D, form a PHP, which can
be formally expressed as

 = {x 2 �2 : x /2 ⌅D} = �2 \ ⌅D. (2)

Note that the PHP has also been known as a Hole-1 process
in the literature [14]. We characterize the interference experi-
enced by a typical node in  due to the transmission of the
other nodes of  . Due to the stationarity of the process, the
typical node can be assumed to lie at the origin o, and due
to Slivnyak’s theorem, we can condition on o 2  without
changing the distribution of the rest of the process [13].
Since the typical point is outside the holes by construction,
there are no points of �1 within a disk of radius D around
the typical point. We assume that the serving transmitter is
located at a fixed distance r0. All the transmitters transmit
at the same power P . For the wireless channel, we consider
a standard power law path-loss with exponent ↵ > 2 along
with independent Rayleigh fading. Hence, the received power
at a typical receiver from its serving node is Pr = Phr�↵

0 ,
where h ⇠ exp(1) models Rayleigh fading. Similarly, the
interference power experienced by the typical receiver is

I =

X

x2 
Ph

x

kxk�↵, (3)

where h
x

⇠ exp(1) models Rayleigh fading gain for the link
from interferer x 2  to the typical receiver.

B. SIR and Coverage Probability
Using the received power over the link of interest and the

interference power defined in the previous subsection, the
signal to interference ratio (SIR) can be expressed as:

SIR(r0) =
Phr0�↵

P
x2 Ph

x

kxk�↵
. (4)
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Fig. 1. Geometrical model of interference field involving a single hole.

Denote the minimum SIR required for successful decoding and
demodulation at the typical receiver by �. A useful metric of
interest in wireless networks is the SIR coverage probability
Pc, which is the probability that the SIR at the receiver exceeds
the threshold �. Mathematically, it is

Pc = P{SIR(r0) > � } = P
⇢
h >

�r↵0
P

I

�

(a)
= E


exp

✓
��r↵0

P
I

◆�
(b)
= LI

✓
�r↵0
P

◆
, (5)

where (a) follows from the fact that h ⇠ exp(1), and (b)
from the definition of Laplace transform of interference power
LI(s) = E[exp(�sI)]. Clearly, it is sufficient to focus on the
Laplace transform of interference to study coverage probability
which can be easily derived for our setup using (5). The
Laplace transform LI(s) is characterized in the next Section.

III. LAPLACE TRANSFORM OF INTERFERENCE IN A PHP
Two popular approaches have been used in the literature

to derive the Laplace transform of interference in a PHP.
The first approach is to ignore the holes and approximate
the interference field  by the baseline PPP �2 of density
�2. This approach clearly overestimates the interference power
and hence leads to the lower bound on the Laplace transform
of interference [5]. In the second approach, termed first-
order statistic approximation, the baseline PPP is indepen-
dently thinned such that the resulting density of the PPP
is the same as that of a PHP [13]. Note that the density
of a PHP in terms of �1, �2, and D can be shown to
be �PHP = �2 exp(��1⇡D2

) [13]. Since independent and
uniform thinning of a PPP may remove dominant interferers
in certain instances, this approach is expected to underestimate
the interference and consequently overestimate the coverage
probability. We will compare these approaches with our pro-
posed approach in the numerical results section. We now
present our proposed approach to characterizing the Laplace
transform of interference in a PHP. In the first step, we model
the locations of interferers by a homogeneous PPP �2 of
density �2 from which one single deterministic hole C of
radius D is removed. Let the location of the center of this
hole be y 2 R and hence its distance from the origin be
kyk. The resulting setup is illustrated in Fig. 1. Note that the



interference field in this case is non-isotropic due to the fixed
location of the hole. The Laplace transform of the interference
power received at the origin from the nodes of �2 outside C
is characterized in the next Lemma.

Lemma 1. Let I =

P
x2�2\b

c(y,D) Ph
x

kxk�↵, the Laplace
transform of interference conditioned on kyk is LI|kyk(s) =

exp

 
�⇡�2

(sP )

2/↵

sinc(2/↵)

!
exp

 Z kyk+D

kyk�D

2⇡�(r)

1 +

r↵

sP

rdr

!
(6)

where �(r) =

�2
⇡ arccos

⇣
r2+kyk2�D2

2kykr

⌘
, and C = b(y, D)

denotes the hole centered at y with radius D.

Proof. See Appendix A. ⌅
Remark 1 (Dissolving the hole). The above result has an
interesting interpretation that will be useful in visualizing the
proposed results. Note that since received power is a radially
symmetric function, it solely depends upon the distance of
the transmitter to the origin. Therefore, we can in principle,
dissolve the hole as long as the number of points lying in a
thin strip of radius kyk�D  r  kyk+D and vanishingly
small width dr is not changed. Please refer to Fig. 1 for an
illustration of this strip. Taking a closer look at the interference
originating from this strip we note that the only thing that
matters is the number of points that lie in the part of the
strip that is outside the hole. The area of this region is
2rdr(⇡�✓(r)), where the angle ✓(r) = arccos

⇣
r2+kyk2�D2

2kykr

⌘

is defined in Fig. 1. Therefore, the number of interfering
points lying within this strip is Poisson distributed with mean
�22rdr(⇡ � ✓(r)). Since the exact locations of these points
within the strip doesn’t matter, we can dissolve the hole
and redistribute the points uniformly inside the whole strip
of area 2⇡rdr. This means, the PPP with a hole can be
equivalently modeled as a non-homogeneous PPP with density
�2(1� ✓(r)/⇡), where the �2✓(r)/⇡ term (defined as �(r) in
Lemma 1) captures the effect of hole.

Using these insights, we now derive tight bounds on the
Laplace transform of interference originating from the PHP.

A. Lower Bound on the Laplace Transform of Interference

Before going into the technical details, note that due to path-
loss, the effect of holes that are close to the typical point
will be much more significant compared to the holes that are
farther away. Therefore, to derive an easy-to-use lower bound
on the Laplace transform of interference, we consider only one
hole; the one that is closest to the typical point; and ignore
the other holes. Denoting the location of the closest hole by
y1, the interference field in this case is �2 \ b

c
(y1, D) �  ,

which clearly overestimates the interference of PHP and hence
leads to a lower bound on the Laplace transform. Note that
in Lemma 1, we have already derived the conditional Laplace
transform for the case when there is one hole and its distance
to the origin is known. To derive a lower bound, we simply
need to assume this hole to be the closest point of �1 to the
origin and decondition the result of Lemma 1 with respect to
the distribution of V1 = ky1k. Since the typical point always

lies outside the holes (see Section II), the closest point of �1

is at least a distance D from it. Using this fact, the probability
density function (PDF) of V1 can be shown to be

fV1(v1) = 2⇡�1v1 exp(�⇡�1(v
2
1 �D2

)), v1 � D. (7)

Deconditioning the result of Lemma 1 with respect to this
distribution, the proposed lower bound is derived below.

Theorem 1 (New lower bound). Let I =

P
x2 Ph

x

kxk�↵,
the Laplace transform of interference is lower bounded by

LI(s) � exp

 
�⇡�2

(sP )

2/↵

sinc(2/↵)

!
⇥ (8)

Z 1

D
exp (g(v1)) 2⇡�1v1 exp(�⇡�1(v

2
1 �D2

))dv1

where g(v1) =
R v1+D
v1�D arccos

⇣
r2+v2

1�D2

2v1r

⌘
2�2

1+ r↵
sP

rdr.

Proof. See Appendix B. ⌅

The tightness of this bound will be demonstrated later in
this section after deriving the upper bound.

B. Upper Bound for the Laplace Transform of Interference

To derive an upper bound on the Laplace transform, we
handle each hole individually using the above approach. Note
that since the centers of the holes follow a PPP �1, there
will obviously be overlaps among holes. Therefore, when we
remove points of �2 corresponding to each hole individually
(without accounting for the overlaps), we may remove certain
points multiple times thus underestimating the interference
field, which results in an upper bound on the Laplace transform
of interference. In the extended version of this paper, we show
that handling the overlaps accurately leads to a significant
loss in tractability but fortunately, the following upper bound
derived by ignoring overlaps is fairly accurate.

Theorem 2 (New upper bound). The Laplace transform of
interference in a PHP is upper bounded by

LI(s)  exp

 
�⇡�2

(sP )

2/↵

sinc(2/↵)

!
⇥

exp

✓
�2⇡�1

✓Z 1

D
(1� exp (f(v))) vdv

◆◆
(9)

where f(v) = 2�2

R v+D
v�D arccos

⇣
r2+v2�D2

2vr

⌘
1

1+ r↵
sP

rdr.

Proof. See Appendix C. ⌅

As demonstrated analytically in the next subsection and
numerically later in the sequel, both the upper and lower
bounds derived above are surprisingly tight.

C. Ratio of the Bounds

To study the tightness of the proposed upper and lower
bounds, we derive a tight approximation on the ratio of upper
bound and lower bound and show that it is close to one.
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Fig. 2. Four configurations in the PHP network model (a) First: LD-SH, (b) Second: HD-SH, (c) Third: LD-LH, and (d) Fourth: HD-LH.

Proposition 1. The ratio of the upper and lower bounds on
the Laplace transforms derived in Theorems 2 and 1 is

Lu(s)

Ll(s)
⇡ (10)

Z 1

D
exp


�2⇡�1

Z 1

v1

(1� exp (f(v))) vdv

�
fV1(v1)dv1,

where Lu(s) and Ll(s) denote the proposed upper and lower
bounds, given by Theorem 2 and Theorem 1, respectively.
Further, f(v) = 2�2

R v+D
v�D arccos

⇣
r2+v2�D2

2vr

⌘
1

1+ r↵
sP

rdr.

Proof. See Appendix D. ⌅
This approximation can be interpreted as the Laplace trans-

form of interference power removed by all the holes except
the closest hole from the homogeneous PPP �2 after ignoring
the effect of overlaps. This will be shown to be tight and close
to one across wide range of parameters in the next subsection.

D. Discussion and Numerical Results

In this section, we validate the tightness of the bounds
derived in the previous two subsections and compare them
with the known results. Simulations are performed over cir-
cular region with radius 40m and results are averaged over
5 ⇥ 10

4 iterations. Unless otherwise specified, we set the
network parameters as follows: �2 = 1, ↵ = 4, P = 1,
r0 = 0.1. We compare our proposed bounds with two known
results discussed in the first paragraph of Section III: (i) the
first-order statistic approximation provided in [13], and (ii) the
PPP-based bound where  is approximated by �2. As Fig. 2
shows, network parameters are adjusted such that four different
configurations are realized. The network configuration depends
on the densities �1, �2 and radius D which are the design
parameters of the system. We define the possible configura-
tions as: low density of holes and small holes (LD-SH); high
density of holes and small holes (HD-SH); low density of
holes and large holes (LD-LH); and high density of holes and
large holes (HD-LH). Fig. 3 compares the ratio of proposed
upper and lower bounds along with an approximation on this
ratio derived in Proposition 1. In addition to validating the
tightness of the approximation given by Proposition 1, this
result shows that the ratio in all cases of interest is close to
one, which demonstrates the tightness of the upper and lower
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Fig. 3. Ratio of the new upper and lower bounds.
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Fig. 4. Analytical and simulation results for the coverage probability of a
typical PHP user in a HD-SH scenario (�1 = 0.2 and D = 0.6).

bounds derived in Theorems 2 and 1, respectively. Note that,
as expected, the ratio is comparatively higher when the holes
are large and dense (HD-LH case).

Before going into further details, note that when the holes
are small and sparse (LD-SH case), our analytical new lower
and upper bounds, the first-order statistic approximation and
PPP-based bound are all expected to be fairly tight. This case
is at least more benign than the case where holes are small
and dense (LD-SH). Similarly, the case where holes are large
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Fig. 5. Analytical and simulation results for the coverage probability of a
typical PHP user in a HD-LH scenario (�1 = 0.2 and D = 1.5).

and sparse (LD-LH) is more benign than the case where the
holes are both large and dense (HD-LH). Because of the space
constraints, we focus only on the cases where the holes are
dense (HD-SH and HD-LH). If we are able to demonstrate
the tightness of bounds in these cases, that will directly imply
tightness in the other two cases as well.

We now compare the proposed bounds with the numeri-
cal results and the known approaches in terms of coverage
probability in Figs. 4 (HD-SH case) and 5 (HD-LH case). As
demonstrated in (5), the coverage probability for our setup
is simply the Laplace transform of interference evaluated at
s =

�r↵0
P . In Fig. 4 (HD-SH case), we notice that both the

proposed upper and lower bounds provide remarkably accu-
rate characterization of coverage probability. Both the known
results provide loose but still reasonable characterization. In
Fig. 5, we focus on the worst configuration that could possibly
happen (HD-LH). The new bounds again provide an accurate
characterization of the coverage probability. On the other hand,
both the known results are fairly loose. In particular, the first
order statistic approximation does not seem to work at all.
This is because by removing points independently from �2, the
local neighborhood of the typical point is disturbed leading to a
very loose result. On a similar note, the proposed results work
fairly well in this case as well because the local neighborhood
is preserved while deriving both the bounds.

IV. CONCLUSION

In this paper, we have provided new easy-to-use provable
bounds on the Laplace transform of interference experienced
by a typical user in a PHP. In addition to accurately character-
izing the interference, these bounds immediately characterize
the coverage probability of a typical user in the Rayleigh
fading case. Since the prior work has mostly focused on
reducing the PHP to a PPP either by ignoring the holes or
by matching the PPP density to that of a PHP, to the best of
our knowledge, the proposed bounds are the tightest known
bounds for the Laplace transform of interference in a PHP.
For the analysis, we proposed a new approach in which the
holes are dissolved in such a way that a PHP is reduced
to an equivalent (and more tractable) non-homogeneous PPP.

The key in deriving tight bounds was to preserve the local
neighborhood around the typical point while simplifying the
far field to attain tractability. The tightness of the bounds is
demonstrated analytically as well as numerically by comparing
with simulations and known approaches. These results have
numerous applications in a variety of wireless networks where
interference management is performed by spatially separating
the active links, such as in cognitive radio and D2D networks.

APPENDIX

A. Proof of Lemma 1

The Laplace transform of interference conditioned on the
distance of the hole center to the origin, kyk, is

LI|kyk(s) = E

2
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rdr

1

A (11)

where (a) follows from h
x

⇠ exp(1) and the expression for
the PGFL of a PPP [15]. The first integral in (b) follows from
the standard machinery, where the integral is first converted
form Cartesian to polar coordinates and the closed form
expression is then derived by using the properties of the
Gamma function [2, Appendix B]. The second term follows
from the cosine-law: r2+kyk2�2rkyk cos ✓(r) = D2 (Fig. 1).
By substituting �(r) =

�2
⇡ arccos

⇣
r2+kyk2�D2

2kykr

⌘
, the final

expression in equation (6), is derived.

B. Proof of Theorem 1

The lower bound on Laplace transform of interference is
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where b(y1, D) denotes the hole centered at y1 with radius
D, and (a) follows by substituting the conditional Laplace
transform expression from Lemma 1, and the PDF of V1 from
(7). Further, g(v1) =

R v1+D
v1�D arccos

⇣
r2+v2

1�D2

2v1r

⌘
2�2

1+ r↵
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rdr.



C. Proof of Theorem 2

By definition, the Laplace transform of the PHP is

LI(s)
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where ⌅D in (a) is , S
y2�1

b(y, D) as defined in (1), (b) fol-
lows by taking expectations over channel gains h

x

⇠ exp(1)

and the PPP �2 given ⌅D, where we use the PGFL of a PPP
to take expectation over �2. Note the integral over ⌅D is not
easy to compute due to the possible overlaps in the holes.
Therefore, to derive the bound, we use
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sP
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sP

,

which follows by ignoring the effect of overlaps. Substituting
this back in the expression of LI(s); solving the first integral
as done in Lemma 1; and using the result of Lemma 1 to
handle the integral over b(y, D), we get

LI(s)  exp
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(1� exp (f(v))) vdv

�
,

where the second term in (a) follows from the PGFL of
a PPP, and then by substituting kyk = v and f(v) =

2�2

R v+D
v�D

arccos( r2+v2�D2

2vr )

1+r↵/s rdr. Since by definition of the typ-
ical point in this case there are no points of �1 in b(0, D),
the lower bound of integral in the above expression is D.

D. Proof of Proposition 1

Denote the interference powers used for deriving the lower
and upper bounds on the Laplace transform of interference in
Theorems 1 and 2 by Il and Iu, respectively. For instance,
Il =

P
x2�2\b

c(y1,D) Ph
x

kxk�↵, where y1 is the location
of the closest point of �1 to the origin. Using this notation,
the ratio of the upper and lower bounds is

Lu(s)

Ll(s)
=

E
⇥
e�sIu

⇤

E [e�sIl
]

(a)
 E

⇥
e�sIu

⇤
E


1

e�sIl

�
(b)
⇡ E

h
e�s(Iu�Il)

i
,

where (a) follows from the Jensen’s inequality, and (b) is an
approximation because Iu and Il are not truly independent. We
will numerically show that the resulting expression provides
a tight approximation. As it is clear from the proof of
Theorem 2, Iu is the effective interference from �2 when
holes corresponding to �1 are carved out individually without
worrying about the overlaps. In other words, some points of
�2 may be virtually removed multiple times, thus leading to
an upper bound on the Laplace transform. This means Iu � Il

term in the above expression can be interpreted as the effective
interference power removed by all the holes except the closest
hole from the homogeneous PPP �2, where again the overlap
among the holes is ignored. On the same lines as the proof of
Theorem 2, the term E

⇥
e�s(Iu�Il)

⇤
can be evaluated as

E�1|V1
exp

0

@
2�2

0

@
X

y2�1/y1

Z kyk+D

kyk�D

arccos(

r2+kyk2�D2

2kykr )

1 + r↵/s
rdr

1

A

1

A

(b)
= exp


�2⇡�1

Z 1

v1

(1� exp (f(v))) vdv

�
,

where (b) is obtained from PGFL of a PPP and f(v) =

2�2

R v+D
v�D arccos

⇣
r2+v2�D2

2vr

⌘
1

1+ r↵
Ps

rdr. Note that V1 = ky1k
is the distance of the closest point of �1 from the origin.
Deconditioning over the distance V1 using the distribution
given by (7) completes the proof.
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