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Abstract—The macro base station (BS) deployments in modern
cellular networks are neither regular nor completely random.
We use determinantal point process (DPP) models to study the
repulsiveness among macro base stations observed in cellular
networks. Three DPP models are fitted to base station location
data sets from two major US cities. Hypothesis testing is used
to validate the goodness-of-fit for these DPP models. Based on
performance metrics including the K-function, the L-function and
coverage probability, DPP models are shown to be accurate in
modeling real BS deployments. On the contrary, the Poisson point
process and perturbed hexagonal grid model are shown to be
less realistic. Different DPP models are compared, and several
computational properties of these models are also discussed.

I. INTRODUCTION

Traditionally, cellular base stations have been modeled by
grid-based models. However, real base station deployments are
irregular and semi-random, due to network planning, oppor-
tunistic BS placement, and other topological and demographic
factors. In addition to the grid-based model, random spatial
point process models have become increasingly popular, both
because they can describe highly irregular placements, and
because stochastic geometry provides a tractable tool to analyze
them [1]. In most prior works, starting with [2] [3], cellular base
station locations are modeled as a homogeneous Poisson point
process (PPP), and stochastic geometry is used to analytically
derive key performance metrics such as the coverage probability
and the mean Shannon rate.

Although tractable results can be derived under PPP, it is
an idealized model since cellular base stations are assumed
to be located in a totally independent way from each other.
Real (macro) BS deployments exhibit “repulsion” between
the BSs, because it generally does not make sense to install
macro BSs very close to each other. Therefore, macro BSs are
typically distributed more regularly than the PPP. Therefore,
Gibbs processes which are able to model inter-point interactions
were investigated in [4] [5] [6]. In terms of the SIR distribution
and Voronoi cell area distribution, Gibbs models were validated
to be statistically similar to real BS deployment in [4]. The
Strauss process, which is an important class of Gibbs processes,
is shown to provide an accurate statistical fit to some real
BS deployments [5] [6]. By contrast, the PPP and the grid
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models are demonstrated to be less accurate models for real
BS deployments [4] [5].

A significant limitation of using Gibbs processes is their lack
of tractability, since the probability generating functionals of
Gibbs models are unknown in general [5]. Therefore, more
tractable point processes are desirable, ideally preserving the
excellent accuracy given by the Gibbs process. Determinan-
tal point processes (DPPs) form a promising class of such
models for cellular BS distributions for several reasons. First,
DPPs have soft and adaptable repulsiveness [7]. Second, sta-
tistical inference for DPP models can be effectively evalu-
ated [8] [9]. Third, many stationary DPP models can be easily
simulated [8]. Fourth, DPPs have many nice mathematical
properties, which lend them to the analysis of cellular network
performance [10] [11].

Although DPPs have many potential advantages, the accu-
racy of using DPP models for macro BS distributions is still
unexplored. In this work, we fit three DPP models (Gauss,
Cauchy, Generalized Gamma) proposed in [8] to two real
base station location data sets of major US cities. Based on
metrics including the K-function and the L-function [12, p.
142], as well as coverage probability [3], the goodness-of-fit
of these DPP models is evaluated through hypothesis testing
procedures. The main observations of this paper are: (1) DPPs
are accurate models for real macro BS deployments in terms
of the above summary statistics, especially for sprawling and
flat areas where repulsiveness among BSs are expected; (2) the
fitted Generalized Gamma model is found to have the strongest
repulsiveness, followed by the Gauss model, while the Cauchy
DPP model is the least repulsive; and (3) the Gauss DPP
model has the best balance between modeling accuracy and
mathematical tractability, which makes it a promising model to
use in future analysis.

II. DETERMINANTAL POINT PROCESS

In this section, we provide the definition, some important
properties and examples of DPP models.

DPPs are defined based on their n-th order product densities.
Consider a locally finite spatial point process Φ defined on a
Borel set B ⊆ R2. Then Φ has n-th order product density
function ρ(n) : Bn → [0,∞) if for any Borel function h :
Bn → [0,∞):

E

6=∑
X1,...,Xn∈Φ

h(X1, ..., Xn) =

∫
B

· · ·
∫
B

ρ(n)(x1, ..., xn)

× h(x1, ..., xn)dx1· · · dxn,

(1)



where 6= means X1, ..., Xn are pair-wise different.
Definition 1: The spatial point process Φ defined on the

Borel set B is called a determinantal point process with kernel
K, if its n-th order product density has the following form:

ρ(n)(x1, ..., xn) = det (K(xi, xj))1≤i,j≤n , (2)

where det(A) denotes the determinant of the square matrix A.
Throughout this paper, the kernel K(x, y) is assumed to be

a continuous, Hermitian, locally square integrable and non-
negative definite function. The repulsive nature of DPP can
be explained based on the fact that ρ(n)(x1, ..., xn) ≈ 0 when
xi ≈ xj for i 6= j.

A DPP defined on R2 is stationary if its n-th order product
density is invariant under translations. A natural way to guar-
antee the stationarity of a DPP model Φ is that its kernel K be
of the form: K(x, y) = K0(x− y) for x, y ∈ R2. In this case,
K0(·) is also referred to as the covariance function of Φ.

For stationary DPPs, the intensity measure (i.e., first order
product density) is constant over R2, and the pair correlation
function of x, y only depends on the difference y − x.

Another important feature of stationary DPPs is their spectral
density:

Definition 2: (Spectral Density [8]) The spectral density ϕ
of a stationary DPP model Φ with covariance function K0(t)
is defined as:

ϕ(x) =

∫
R2

K0(t)e−2πix·tdt, x, t ∈ R2. (3)

The spectral density is extremely useful for simulating
stationary DPP models, and it also serves for checking the
existence of a DPP with a given kernel. Specifically, from
Proposition 5.1 in [8], the existence of a DPP model is
equivalent to its spectral density ϕ belonging to [0, 1].

Below, we study several examples of stationary DPP models
proposed in [8]:

1) (Gauss DPP Model): A stationary point process Φ is a
Gauss DPP if it has covariance function:

K0(x) = λ exp(−‖x/α‖2), x ∈ R2. (4)

Equivalently, the spectral density of a Gauss DPP is
defined as:

ϕ(x) = λ(
√
πα)2 exp(−‖παx‖2), x ∈ R2.

In the above definition, λ denotes the spatial intensity of
the Gauss DPP, while α is a measure of its repulsiveness.
In order to guarantee the existence of Gauss DPP model,
the parameter pair (λ, α) needs to satisfy:

λ ≤ (
√
πα)−2.

2) (Cauchy DPP Model): The Cauchy DPP model has a
covariance function K0(·) of the form:

K0(x) =
λ

(1 + ‖x/α‖2)
ν+1 , x ∈ R2. (5)

In the Cauchy DPP model, λ describes the intensity, while

(a) Houston BS deployment (b) LA BS deployment

Fig. 1: Actual macro BS deployments of Houston and LA.

α is the scale parameter and ν is the shape parameter.
Both α and ν affect the repulsiveness of the DPP. To
guarantee the existence of a Cauchy DPP, the parameters
need to satisfy:

λ ≤ ν

(
√
πα)2

.

3) (Generalized Gamma DPP Model): The Generalized
Gamma model is defined based on its spectral density,
which has the following form:

ϕ(x) = λ
να2

2πΓ(2/ν)
exp(−‖αx‖ν), (6)

where Γ(·) denotes the Euler gamma function.
The existence of a Generalized Gamma DPP can be
guaranteed when its parameters satisfy:

λ ≤ 2πΓ(2/ν)

να2
.

III. MODELING BASE STATION DEPLOYMENT AS
STATIONARY DPP MODELS

In this section, we fit these stationary DPP models to real
base station deployments. Our simulations are based on the
publicly available package for DPP models [8] implemented in
R, which is used as a supplement to the Spatstat library [13].

BS deployments in two major US cities are investigated1.
Fig. 1a shows the deployment of 115 BSs in a 16 km × 16
km area of Houston, while Fig. 1b shows the deployment of
184 BSs in a 28 km × 28 km area of Los Angeles (LA). Both
deployments are for sprawling and relatively flat areas, where
repulsion among BSs is expected.

A. Summary Statistics

Given these stationary DPP models, an interesting question
is how accurate they can model real macro base station de-
ployments. To test the goodness-of-fit of these DPP models,
the following metrics are taken into consideration.

1BS location data was provided by a major tower owner in the USA.



Ripley’s K function: Ripley’s K function is a second order
spatial summary statistic defined for stationary point processes.
It counts the mean number of points within distance r of a given
point in the point process excluding the point itself. Formally,
the K function K(r) for a stationary and isotropic point process
Φ with intensity λ is defined as:

K(r) =
E!o (Φ(B(o, r)))

λ
(7)

where E!o(·) is the expectation with respect to the reduced Palm
distribution of Φ [12, p. 148], and B(o, r) is the ball centered
at origin with radius r.

The K-function is used as a measure of repulsive-
ness/clustering of spatial point processes. Specifically, com-
pared to the PPP which is completely random, a repulsive point
process model will have a smaller K function, while a clustered
point process model will have a larger K function.

L function: The L function is also a closely related summary
statistics which is defined as L(r) =

√
K(r)/π. Compared

with the L-function of the PPP which is equal to r, L(r) >
r corresponds to clustering point processes, while L(r) < r
corresponds to repulsive point processes.

Coverage Probability: We focus on the downlink coverage
probability of a typical user. The following assumptions are
used to evaluate the coverage probability: (1) all BSs are trans-
mitting at fixed power P ; (2) i.i.d. Rayleigh fading channels
with mean 1 are assumed; (3) a power-law path loss model
with path loss exponent β is used, i.e., l(x) = ‖x‖−β ; (4)
shadowing effects are neglected; (5) noise power is negligible
compared to interference, and specifically we set noise power
equal to 0; (6) BS locations form a realization of a stationary
and isotropic DPP Φ; (7) mobile users are uniformly distributed,
independent of the BSs; and (8) each mobile user communicates
with its nearest BS.

Based on these assumptions, the coverage probability for a
typical user located at z with threshold T is defined as:

Pc(z, T ) = P(
Phx0

‖x0 − z‖−β∑
xi∈Φ\x0

Phxi
‖xi − z‖−β

> T ), (8)

where x0 denotes the serving BS of z, and hxi
∼ exp(1)

denotes the Rayleigh fading channel from BS xi to the typical
user. A path loss exponent β = 4 is used in all our simulations.

B. Hypothesis Testing using Summary Statistics
In this part, we will evaluate the goodness-of-fit of stationary

DPP models using the summary statistics discussed above.
Particularly, we fit the real BS deployments in Fig. 1 to the
Gauss, Cauchy and Generalized Gamma DPP models. An
important step for fitting real data points to some stationary
DPP model is to estimate the parameters that define its kernel
or spectral density. This parameter estimation is based on a
maximum likelihood (ML) estimate of the density function,
which is implemented in the software package provided in [8].
Based on the ML estimate method, we have summarized the
estimated parameters for different DPPs in Table I and Table II.

TABLE I: DPP Parameters for the Houston Data Set

Model λ α ν
Gauss DPP 0.4492 0.8417 −

Cauchy DPP 0.4492 1.558 3.424
Generalized Gamma DPP 0.4492 2.539 2.63

TABLE II: DPP Parameters for the LA Data Set

Model λ α ν
Gauss DPP 0.2347 1.165 −

Cauchy DPP 0.2347 2.13 3.344
Generalized Gamma DPP 0.2347 3.446 2.505

To evaluate the goodness-of-fit for these DPP models, we
generate 1000 realizations of each DPP model and examine
whether the simulated DPPs fit with the behavior of real BS
deployments in terms of the summary statistics. Specifically,
we verify whether the K-function or the L-function of the data
set lies within the envelope of the simulated DPP models. We
use similar testing method for coverage probability, a 95%
confidence interval is used for evaluation.
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Fig. 2: The K function and the L function for the Gauss DPP
model fitted to the Houston data set.

Goodness-of-fit for the Gauss DPP Model: The testing
results for the K function and the L function of the fitted Gauss
DPP model are given in Fig. 2 for the Houston data set, and in
Fig. 3 for the LA data set. Both figures clearly show that the
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Fig. 3: The K function and the L function for the Gauss DPP
model fitted to the LA data set.

K and the L functions of the real BS deployments lie within
the envelope of the fitted Gauss DPP model.

The coverage probability for the fitted Gauss DPP model
is provided in Fig. 4 for both data sets, from which it can
be observed that the coverage probability of the Houston and
LA data set lies within the 95% confidence interval of the
simulated Gauss DPP models. In addition, the average coverage
probability of the fitted Gauss model is slightly lower than
that of real data sets, which means the fitted Gauss model
corresponds to a slightly smaller repulsiveness than the real
deployments.

Therefore, in terms of the above summary statistics, the
Gauss DPP model can be used as a reasonable point process
model for real BS deployments. Due to the concise definition
of its kernel, a shot noise analysis of the Gauss DPP is possible.

Goodness-of-fit for the Cauchy DPP Model: Based on
the same method as for the Gauss DPP model, we tested the
goodness-of-fit for the Cauchy DPP model. The fitting results
for the Houston data set are shown in Fig. 5 and Fig. 6, from
which it can be concluded that the Cauchy DPP model is also
a reasonable point process model for real BS deployments.
Similar fitting results are also observed for the LA data set, and
thus we omit the details. Compared to the Gauss DPP model,
the average coverage probability for the Cauchy DPP model in
Fig. 6 is slightly lower than that in Fig. 4, which means the
Cauchy DPP model corresponds to a smaller repulsiveness than
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Fig. 4: Coverage probability of the fitted Gauss DPP model.

the Gauss DPP model. In addition, compared to Fig. 2, Fig. 5
shows that the Cauchy DPP model has a wider envelope for
the L function and therefore a lower precision in modeling the
real BS deployments.

Goodness-of-fit for the Generalized Gamma DPP Model:
The goodness-of-fit for the Generalized Gamma DPP model is
evaluated for the Houston data set in Fig. 7 and Fig. 8 (the LA
data set has similar fitting results). The Generalized Gamma
model provides the best fit among all these DPP models, espe-
cially in terms of coverage probability. In Fig. 8, the average
coverage probability of the Generalized Gamma model almost
exactly matches the real BS deployment, while the average
coverage probability of the Gauss DPP and the Cauchy DPP all
stay below the real data set. This is because the Generalized
Gamma model corresponds to a higher repulsiveness (which
will be proved in next subsection), from which a larger coverage
probability is expected. In addition, Fig. 7 also shows that the
Generalized Gamma model has high precision in modeling real
BS deployments, since it corresponds to a narrow envelope in
terms of the K function and the L function.

Goodness-of-fit for the PPP and the perturbed hexago-
nal model: Finally, the goodness-of-fit for the PPP and the
perturbed hexagonal grid model are studied. The perturbed
hexagonal grid model is obtained by independently perturbing
each point of a hexagonal grid in the random direction by a
distance d [4]. This distance is uniformly distributed between
0 and ηr, with r being the radius of the hexagonal cells
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Fig. 5: The K function and the L function for the Cauchy DPP
model fitted to the Houston data set.
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Fig. 6: Coverage probability of the fitted Cauchy DPP model.

and η is chosen as 0.5 in our simulation. Fig. 9 shows the
coverage probability of the PPP and the perturbed hexagonal
grid model fitted to the Houston data set, which correspond
to a lower bound and an upper bound of the actual coverage
probability respectively. This is because the PPP has complete
spatial randomness while the perturbed grid model maintains
good spatial regularity. Similar observations can also be derived
for the LA data set. Therefore, compared to DPP models, the
PPP model and the perturbed hexagonal grid model should be
rejected as reasonable random point process models to study
real macro BS deployments.
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Fig. 7: The K function and the L function for the Generalized
Gamma model fitted to the Houston data set.
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Fig. 8: Coverage probability of the fitted Generalized Gamma
model.

C. Repulsiveness Comparison of fitted DPP Models

In this part, we use the metric suggested in [8] to measure
repulsiveness of fitted DPP models, and explain why the Gen-
eralized Gamma model has the highest repulsiveness. Specifi-
cally, the intensity measure of a stationary DPP model Φ under
its reduced Palm distribution is ρ(1)

o (x) = ρ(2)(0, x)/ρ(1)(x),
where ρ(2) and ρ(1) are the second and the first order product
density of Φ. By calculating the difference of the total expected
number of points under the probability distribution P and the
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Fig. 9: Coverage probability of the PPP and the perturbed grid
model.

reduced Palm distribution P!o, the repulsiveness of a stationary
DPP model Φ with constant intensity λ can be measured using
the following metric [8]:

µ =

∫
R2

[
λ− ρ(1)

o (x)
]
dx =

1

λ

∫
R2

|K0(x)|2dx =
1

λ

∫
R2

|ϕ(x)|2dx.
(9)

In particular, larger value of µ will correspond to higher
repulsiveness.

Based on metric µ, the repulsiveness of the Gauss, Cauchy
and Generalized Gamma DPP models can be measured as:

µgauss =
λπα2

2
,

µcauchy =
λπα2

2ν + 1
,

µgengamma =
λνα2

21+2/νπΓ(2/ν)
.

(10)

By substituting the parameters listed in Table I and Table II
to Eq. (10), we can explicitly calculate the repulsiveness
measure of each DPP model fitted to the Houston data set as
µgauss = 0.4999, µcauchy = 0.4365 and µgengamma = 0.5905.
The same procedure is adopted for the LA data set, where
the repulsiveness measures are given by µgauss = 0.5004,
µcauchy = 0.4351, µgengamma = 0.5479. Therefore, it can be
concluded that the fitted Generalized Gamma model has the
largest repulsiveness, followed by the Gauss model, while the
Cauchy model is the least repulsive. Since higher repulsiveness
will result in more regularity for the distribution of the point
process, Generalized Gamma models generally correspond to
larger average coverage probability.

IV. CONCLUSION

In this paper, the accuracy of using determinantal point
processes to model cellular base station deployment is in-
vestigated. Three DPP models: the Gauss model, the Cauchy
model and the Generalized Gamma model are fitted to two real
macro base station deployments. By using the K-function, the
L-function, and coverage probability as performance metrics,

hypothesis testing procedures are used to evaluate the goodness-
of-fit of these DPP models. Due to its higher repulsiveness,
the Generalized Gamma model provides the best fit to real
BS deployments in terms of coverage probability. However,
the Generalized Gamma model is generally less tractable since
it is defined based on spectral density. In contrast, the Gauss
DPP model also provides reasonable fit to real BS deployments,
but with better mathematical tractability due to the simple
definition of its kernel. Compared to other DPP models, the
fitted Cauchy model has the smallest repulsiveness and also
less precise results in terms of the summary statistics such as
coverage probability.

Future work will analyze cellular networks using DPP
distributed BSs, which is possible since DPPs have several
computational properties which facilitate the analysis. First,
DPPs have closed-form product density of any order as shown
in Eq. (1). Second, DPPs have closed-form Laplace functional
for any function f : R2 → R+ [10, Theorem 1.2]. Third,
under the reduced Palm distribution, the original DPP has
the same law as another DPP model whose kernel is given
in closed-form [10, Theorem 1.7]. Based on these properties,
many important metrics related to cellular networks can be
derived, such as the empty space function, the mean/variance
of the interference, and the coverage probability, etc.
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