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The increasing complexity of heterogeneous cellular networks (HetNets)

due to the irregular deployment of small cells demands significant rethinking in

the way cellular networks are perceived, modeled and analyzed. In addition to

threatening the relevance of classical models, this new network paradigm also

raises questions regarding the feasibility of state-of-the-art simulation-based

approach for system design. This dissertation proposes a fundamentally new

approach based on random spatial models that is not only tractable but also

captures current deployment trends fairly accurately.

First, this dissertation presents a general baseline model for HetNets

consisting of K different types of base stations (BSs) that may differ in terms

of transmit power, deployment density and target rate. Modeling the locations

of each class of BSs as an independent Poisson Point Process (PPP) allows

the derivation of surprisingly simple expressions for coverage probability and

average rate. One interpretation of these results is that adding more BSs or

viii



tiers does not necessarily change the coverage probability, which indicates that

fears of “interference overload” in HetNets are probably overblown.

Second, a flexible notion of BS load is incorporated by introducing a

new idea of conditionally thinning the interference field. For this generalized

model, the coverage probability is shown to increase when lightly loaded small

cells are added to the existing macrocellular networks. This is due to the fact

that owing to the smaller loads, small cells typically transmit less often than

macrocells, thus contributing less to the interference power. The same idea of

conditional thinning is also shown to be useful in modeling the non-uniform

user distributions, especially when the users lie closer to the BSs.

Third, the baseline model is extended to study multi-antenna Het-

Nets, where BSs across tiers may additionally differ in terms of the number

of transmit antennas, number of users served and the multi-antenna transmis-

sion strategy. Using novel tools from stochastic orders, a tractable framework

is developed to compare the performance of various multi-antenna transmis-

sion strategies for a fairly general spatial model, where the BSs may follow

any general stationary distribution. The analysis shows that for a given total

number of transmit antennas in the network, it is preferable to spread them

across many single-antenna BSs vs. fewer multi-antenna BSs.

Fourth, accounting for the load on the serving BS, downlink rate dis-

tribution is derived for a generalized cell selection model, where shadowing,

following any general distribution, impacts cell selection while fading does not.

This generalizes the baseline model and all its extensions, which either ignore

ix



the impact of channel randomness on cell selection or lumps all the sources of

randomness into a single random variable. As an application of these results,

it is shown that in certain regimes, shadowing naturally balances load across

various tiers and hence reduces the need for artificial cell selection bias.

Fifth and last, a slightly futuristic scenario of self-powered HetNets

is considered, where each BS is powered solely by a self-contained energy

harvesting module that may differ across tiers in terms of the energy harvesting

rate and energy storage capacity. Since a BS may not always have sufficient

energy, it may not always be available to serve users. This leads to a notion

of availability region, which characterizes the fraction of time each type of BS

can be made available under variety of strategies. One interpretation of this

result is that the self-powered BSs do not suffer performance degradation due

to the unreliability associated with energy harvesting if the availability vector

corresponding to the optimal system performance lies in the availability region.
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Chapter 1

Introduction

The mathematical analysis of cellular networks, even in their most

primitive form consisting of a single type of base stations (BSs), is known

to be hard. This prompted the use of highly simplified system models for

analysis and system level simulations for design. To make matters worse, the

complexity of cellular networks is rapidly increasing because of the irregular

deployment of various types of low-power BSs, such as microcells, picocells,

femtocells, and distributed antennas. This not only threatens the conven-

tional cellular models with obsolescence, but also questions the feasibility of

state-of-the-art simulation-based approach for system design. In particular,

the addition of several types of low-power BSs increases the number of simu-

lation scenarios significantly, resulting in a prohibitive complexity of detailed

system level simulations. As a result, the current paradigm shift demands

significant rethinking in the way cellular networks are perceived, modeled and

analyzed. Recognizing this urgent need for better modeling tools, this disserta-

tion develops a fundamentally new analytical approach that not only captures

the current deployment trends accurately, but also facilitates analysis lead-

ing to simple and easy to use expressions for key performance metrics under

sufficiently general settings. The main idea is to use random spatial models,
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where the BS locations of each tier are endowed with a probability distribu-

tion instead of being considered fixed as is typically the case in the popular

grid-based models [1–4]. Contrary to the conventional wisdom, the added ran-

domness lends tractability by allowing the use of powerful mathematical tools

from stochastic geometry for performance analysis [1, 5].

This introductory chapter is divided into three main parts. The first

part, spanning Sections 1.1-1.2, provides a background on cellular networks

and discusses main challenges involved in the downlink analysis using popular

grid-based models. For the same setup, the proposed idea of modeling the

BS locations with a stochastic process, in particular the Poisson Point Pro-

cess (PPP), is shown to simplify the analysis significantly. The second part,

spanning Sections 1.3-1.4, provides a broad overview of why heterogeneity

in cellular networks is inevitable in order to cope up with the current usage

trends. It then argues why the conventional models are insufficient to study

this new network paradigm. Section 1.5 forms the third part, where the key

contributions of this dissertation are summarized.

1.1 Background

A fundamental property of wireless signals is that they get attenuated

as the separation between the transmitter and receiver is increased [6]. This

attenuation is termed as distance-based path loss. As a result, the strength of

the wireless signal beyond a certain distance from the transmitter is so weak

that it is impossible for the receiver to differentiate it from thermal noise,
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Figure 1.1: Hexagonal grid model for BS locations.

i.e., the signal gets buried in noise. Due to this property, two transmitters

sufficiently far apart in space do not pose significant interference to each other

even if they use the same time-frequency resources. This forms the basis

of frequency reuse, which is at the heart of the cellular concept. Frequency

reuse enables the division of space into “cells” each served by one BS, utilizing

time-frequency resources that may be reused by other cells [7]. The resulting

network, termed the cellular network, is the main focus of this dissertation.

An equivalent interpretation of the distance-based path loss is that the

network area that can be served by a BS, often termed the coverage area,

is limited. In the absence of obstructions and interferers, this area can be

modeled as a circular disc centered at the BS. In the presence of interferers,

however, the coverage area depends upon other factors such as the locations of

the interferers, their transmit powers and the propagation environment. The
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most popular and widely accepted model for this purpose is the hexagonal grid

model, where the BSs are assumed to be located on a grid, with their coverage

areas modeled as hexagons, as shown in Figure 1.1. Although a simple ab-

straction of reality, this model captures several key aspects of cellular networks

and has been an industry standard since cellular networks were first concep-

tualized [6, 7]. However, despite its simplicity, it is surprisingly intractable,

especially for downlink analysis, and is useful mainly for the system level sim-

ulations. The key challenges involved in the analysis are discussed in the next

section in the context of the downlink coverage probability in a conventional

single-tier setup where only single type of BSs, e.g., macrocells, are present.

For the same setup, we show that the proposed model simplifies the analysis

significantly.

1.2 Coverage Probability

A key metric of interest in the downlink of cellular networks is the

probability of coverage, where coverage simply means that the strength of

downlink connection to a randomly chosen user is such that it allows the

user to receive both the control signaling and the actual data at a certain

minimum rate. Mathematically, it can be expressed as the probability of the

downlink signal-to-interference-plus-noise ratio (SINR) for an arbitrary user

being greater than a predefined target β. In this section, we formulate the

downlink coverage probability problem in a general single-tier setup. It is

then specialized to two cases of interest: i) hexagonal grid model to highlight
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the key analytical challenges, and ii) the proposed model to highlight how the

new modeling approach is useful in addressing these challenges. Please note

that the sole purpose of this toy example is to introduce key ideas using the

simplest possible setup. More elaborate scenarios and other key performance

metrics are left for the following chapters.

1.2.1 General Problem Setup

Consider a cellular network with Nb BSs transmitting on the same time-

frequency resources, with the possibility thatNb can be infinite. Further details

about the exact partitioning of time-frequency resources are not required for

this discussion. Let a randomly selected user is served by a BS located at a

distance R0. Note that the selection of the serving BS is based on a predefined

selection law, e.g., based on the maximum received power. Further details on

cell selection will be provided when required. All the other Nb− 1 BSs, except

the serving BS, act as interferers. Denote the distance of the randomly selected

user to these interferers by {Ri}, where the subscript 1 ≤ i < Nb denotes the

index of the interferer. All the transmitters are assumed to transmit at a

fixed power P . Each wireless link suffers from a distance based path-loss

with exponent α and Rayleigh fading. Therefore, the received power at a

distance r from the transmitter is Pr = Phr−α, where h ∼ exp(1) models

Rayleigh fading. For the ease of exposition, the thermal noise is assumed to

be negligible compared to inter-cell interference so that the received SINR can

be approximated by signal-to-interference ratio (SIR). The downlink SIR for
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the randomly chosen user in this setup is

SIR =
h0R

−α
0∑Nb−1

i=1 hiR
−α
i

. (1.1)

Note that SIR is a random variable due both to the random channel gains

and the random distances to the serving BS and the interferers. The coverage

probability (Pc) for this general setup can be derived as follows:

Pc = P(SIR > β) (1.2)

= P

(
h0R

−α
0∑Nb−1

i=1 hiR
−α
i

> β

)
(1.3)

= P

(
h0 > βRα

0

Nb−1∑
i=1

hiR
−α
i

)
(1.4)

(a)
= E

[
exp

(
−βRα

0

Nb−1∑
i=1

hiR
−α
i

)]
(1.5)

(b)
= E

[
Nb−1∏
i=1

Ehi exp
(
−βRα

0hiR
−α
i

)]
(1.6)

(c)
= E

[
Nb−1∏
i=1

1

1 + βRα
0R
−α
i

]
, (1.7)

where (a) follows from h0 ∼ exp(1), (b) from the fact that the fading gains

across interfering links are independent, and (c) from hi ∼ exp(1). For further

simplification, we need the distribution of the distances {Ri} of the serving BS

and the interferers to the randomly chosen mobile user. These in turn depend

upon the spatial model of the BS locations and the cell selection rule. We first

specialize the analysis to the hexagonal grid model in the following subsection.
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Figure 1.2: Seven-cell hexagonal grid model with BSs denoted by red dots. A
randomly selected user in the center cell is depicted by a square. It lies at a
distance R0 from the center BS and forms angle θ with the horizontal axis.

1.2.2 Coverage Probability using Hexagonal Grid Model

For simplicity, consider a seven-cell version of the grid model shown in

Figure 1.2, where the interference field is limited to the first ring of interferers.

Note that limiting the interference field to first or at most second ring of

interferers is a common practice in literature [8]. The inter-site distance is

assumed to be D. We assume maximum average power based cell selection,

where each user lying in a particular hexagon is served by the BS lying at the

center of that hexagon. For downlink analysis, a user uniformly distributed in

the center cell is selected, as shown in Figure 1.2. In addition to its distance

to the serving BS, its location is characterized by the angle θ it makes with

the horizontal axis, with the origin being the BS corresponding to the center
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cell. For this setup, the distance of the chosen user to the ith interferer can be

expressed as

Ri =
√

(D cos θi −R0 cos θ)2 + (D sin θi −R0 sin θ)2, (1.8)

with θi being the angle formed by the location of the ith interferer with

horizontal axis. The values of θi for all the six interferers are as follows:

θ1 = π
6
, θ2 = π

2
, θ3 = 5π

6
, θ4 = 7π

6
, θ5 = 3π

2
and θ6 = 11π

6
. Clearly Ri is ran-

dom because of its dependence on R0 and θ. The general coverage probability

expression given by (1.7) can be specialized for this case to

Pc = ER0,θ

[
6∏
i=1

1

1 + βRα
0 ((D cos θi −R0 cos θ)2 + (D sin θi −R0 sin θ)2)−

α
2

]
,

(1.9)

where the expectation is with respect to the joint distribution of R0 and θ.

Due to the complexity of this expression, it is not possible to reduce it any

further, even under further simplifications, e.g., approximating the hexagonal

cell as a circle [9]. The only way forward is to numerically solve this expres-

sion, which in this case is the same as simulating the network deployment.

This is primarily the reason why the hexagonal grid model is typical termed

intractable for downlink analysis [1]. Also note that, with the increasing com-

plexity of cellular networks due to the addition of several types of low-power

BSs, the number of simulation scenarios and hence the complexity of system

level simulations is also becoming increasingly prohibitive, thereby motivating

the need for tractable models, which is the main focus of this dissertation. A

preview of the new approach is provided in the next subsection.
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1.2.3 Coverage Probability using Random Spatial Model

We now discuss a relatively less accepted approach of modeling BS

locations, where instead of putting a rigid stricture as in the hexagonal grid

model, the BS locations are endowed with a probability distribution [1–4]. In

particular, the BS locations are sampled from a PPP. This enables the use of

powerful tools from stochastic geometry to derive simple expressions for key

performance metrics such as coverage probability. Although this idea will be

applied to much general setups in the following chapters, in this section we

continue with the same simple setup as above. The goal is to specialize (1.7)

for this new modeling approach. Please refer to [1] for a detailed exposition of

coverage probability for this single-tier setup.

Assume that the BS locations are modeled by a homogeneous PPP Φ

with density λ, as shown in Figure 1.3. The users are also modeled by an

independent PPP. Without loss of generality, the downlink analysis is con-

ducted at the typical mobile user located at the origin. To be consistent with

the assumptions made for the hexagonal case above, assume that the typical

user connects to the BS that provides the maximum average received power,

i.e., the one that is closest to the origin. Using null probability of a PPP, the

distribution of the distance of the typical user to the serving BS is

fR0(r0) = 2πλr0 exp(−λπr2
0). (1.10)

Using the same approach as [1], the coverage probability expression
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Figure 1.3: The red dots represent BS locations sampled from a PPP. The
typical user is represented by a square.

(1.7) can be simplified using simple tools from stochastic geometry as follows:

Pc =

∫ ∞
0

EΦ

 ∏
xi∈Φ
‖xi‖>r

1

1 + βrα‖xi‖−α

 fR0(r)dr (1.11)

(a)
=

∫ ∞
0

exp

(
−2πλ

∫ ∞
r

1− 1

1 + βrαu−α
udu

)
fR0(r)dr (1.12)

(b)
=

∫ ∞
0

exp

(
−πλr2β

2
α

∫ ∞
β−

2
α

1

1 + v
α
2

dv

)
fR0(r)dr (1.13)

(c)
=

∫ ∞
0

exp
(
−πλr2ρ(α, β)

)
fR0(r)dr (1.14)

(d)
=

1

1 + ρ(α, β)
, (1.15)

where (a) follows from the probability generating functional (PGFL) of a PPP,

(b) follows by the substitution β−
2
α r−2u2 → v, (c) by defining a constant

ρ(α, β) = β
2
α

∫∞
β−

2
α

1

1+v
α
2

dv, and (d) follows by substituting the distribution
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of R0. Interestingly, the coverage probability in this case reduces to a closed

form expression, hence circumventing the need for simulation. Such simple

expressions are useful to gain key system design insights. For instance, the

above expression clearly shows that the coverage probability is independent of

the density of the BSs when the cellular network is interference limited. We

leave more such insights, in significantly more general setups, for the following

chapters.

From the above discussion, it is evident that the new approach is sig-

nificantly more tractable than the state-of-the-art deterministic grid model.

However, the idea of modeling the BS locations with a stochastic process may

seem questionable to certain readers, especially because the grid-based mod-

els have been deeply ingrained in the cellular industry for over three decades.

In the following sections, we address these doubts by explaining why hetero-

geneity and uncertainty in cellular networks is inevitable while handling the

changing usage trends, especially the rising mobile data traffic, and why ran-

dom spatial models are especially attractive to study these new and more

complex cellular networks.

1.3 Changing Usage Trends and 1000x Capacity Goal

Although cellular networks have been designed and optimized primar-

ily for voice-centric applications over the past three decades, the popularity

of advanced communication devices, such as smartphones, laptops and most

recently tablets, has shifted the focus rather quickly towards data-hungry ap-
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plications, such as, live streaming of high definition videos, mobile television,

and symmetric video calls [10]. A direct implication of this social change is

a much sharper increase in mobile data traffic compared to the past. For in-

stance, the global mobile data traffic has more than doubled in 2012 for the

fifth consecutive year, and this trend is expected to continue for at least a few

years more [10]. A straightforward calculation reveals around 1000x increase

in capacity of cellular networks required over a decade. This has in fact been

acknowledged as the main goal by the cellular industry, e.g., by 3GPP [11],

and Qualcomm’s “1000x data challenge”. However, increasing the capacity at

such a rapid rate is challenging and requires a fundamental change in the way

cellular networks are designed and deployed. Several possible approaches to

cope up with this data deluge are discussed below.

Improving spectral efficiency. First and somewhat obvious direc-

tion towards improving the capacity of cellular networks is by increasing the

spectral efficiency (bps/Hz) of the wireless links by using advanced physical

layer techniques, such as multiple input multiple output (MIMO), or by using

smart scheduling. However, these techniques are already relatively mature,

being part of multiple wireless standards such as IEEE 802.11e WiMAX and

3GPP LTE-A [12], apart from plethora of theoretical research activities in

academia [13]. For instance, in case of MIMO, current LTE-A standard al-

ready supports as much as 8 antennas in the downlink and 4 in the uplink [14],

leaving a little room for improvement at the current transmission frequencies,

especially since the goal is a whopping 1000x gain. Furthermore, due to adap-
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tive modulation and coding, the wireless links are already operating close to

their theoretical limits, which further limits the gains [15].

A promising exception is that of massive MIMO, where the idea is to

have hundreds or even thousands of antennas to serve tens of users simulta-

neously in each resource block [16,17]. With the possibility of using the extra

degrees of freedom to form very narrow beams, the theoretical gains in the

throughput are undoubtedly large. Since the antenna size decreases with the

increase in transmission frequency, massive MIMO systems are more meaning-

ful at higher transmission frequencies because otherwise the size of antennas

makes it impossible to pack a massive number of antennas on a reasonably

sized base station (BS). This has led to an increasing interest in “millimeter-

wave massive MIMO” systems with transmission frequencies proposed to be

in 3-300GHz range, which are currently under active research [18,19].

Adding more spectrum. The second main direction is to provide

more spectrum to cellular systems, which relies on the fact that the capacity

of a wireless link scales linearly with the signal bandwidth. As of 2013, the

cellular system has around 600 MHz of licensed spectrum in the US [20], which

along with 440 MHz of usable WiFi spectrum [21], makes a total spectrum of

over 1 GHz. Therefore, for any meaningful capacity gains, the additional spec-

trum needs to be significantly higher than 1 GHz. Since the current cellular

spectrum is mostly in the sub-3 GHz range, with the exception of the new

WiFi spectrum added in the 5 GHz range, to avoid significant changes in the

system design or hardware it is preferable that the new spectrum added to
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the system is also in this range. However, additional spectrum in this range

is scarce and expensive, and is hence not an attractive and cost-effective op-

tion for the service providers. If the recent auctions of 700 MHz band are

any indication, service providers may have to pay around $2 per user for each

additional MHz of bandwidth [22]. Although, Federal Communications Com-

mission (FCC) is considering releasing additional 500 MHz of spectrum in this

range by 2020 [23, 24], it will perhaps come at an already prohibitive cost of

$1000 per subscriber, and is not even enough to provide a 2x gain in capacity.

Another possible option is to utilize the abundant non-congested spec-

trum in 3-300 GHz range, as discussed above for millimeter-wave massive

MIMO systems. While the spectrum is inexpensive in this range, these higher

transmission frequencies exhibit very different propagation characteristics, such

as signal attenuation, multipath and reflection, compared to the current cellu-

lar frequencies, which necessitates fundamental changes in the system design,

e.g., in the air interface [18, 25]. Additionally, these higher transmission fre-

quencies require significant changes in the hardware, including amplifiers and

transceiver architectures [25–27]. Despite these challenges, there have been

some early indications of the promising future of this technology [28]. How-

ever, as is the case with any new technology, it requires time to mature and is

not expected to make it to the cellular systems anytime soon.

Network densification. Third and perhaps the most realistic ap-

proach is to harness the cell splitting gain by densifying the network, i.e., re-

duce the frequency reuse distance by adding more infrastructure. Historically,
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most of the capacity gains in cellular networks are in fact driven by shrinking

cell sizes. For instance, out of the million-fold capacity increase over the past

45 years, only about 25x is attributed to more spectrum, 5x to the division

of spectrum into narrower slices, further 5x to better modulation schemes,

and the remaining 1600x to the smaller cell sizes [29]. However, to cope up

with the current capacity demand, we need a much more aggressive spectrum

reuse than the pre-smartphone era. This is not possible exclusively with the

macrocells, due to their prohibitive capital expenditure (CapEx) and high op-

erational expenditure (OpEx). Other restrictions such as cell site availability

and need for fast dedicated backhaul further limit their deployment especially

in the dense urban markets where most of the data demand originates.

The inability of macrocellular networks to keep up with the rising data

demands has led to the popularity of low-power BSs, collectively termed as

small cells [30]. The small cells typically have orders of magnitude lower

deployment costs, smaller transmit power and hence lower energy costs, and

can be deployed organically based on the capacity demand with comparatively

less cell site restrictions. With high speed wireless backhaul rapidly becoming

a reality [31], there is no apparent limitation on the number of small cells that

can be deployed in a given area. This means that there is no restriction on

the rate at which the area spectral efficiency (bps/Hz/Km2) can be increased,

thus presenting a feasible solution to handle the current data deluge.

A cellular network consisting of different classes of BSs, such as macro-

cells and various types of small cells, is termed as a heterogeneous cellular
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Figure 1.4: Illustration of a three-tier heterogenous network utilizing a mix of
macro, pico and femtocell BSs. Only a single macro-cell is shown for the sake
of simplicity.

network, or in short a HetNet. Due to the above mentioned advantages, Het-

Nets have been embraced enthusiastically by the cellular industry, with their

standardization activities already started in 3GPP release 10 [14]. The network

operators have also started deploying small cells at “hot-spots”, i.e., places of

high user density, such as airports, to augment the capacity of macrocellular

networks, and at “not-spots” to fill the coverage holes. Various features of Het-

Nets are under active investigation in both academia and industry, with early

deployments and industry predictions indicating fairly promising gains [32–34].

In the next section, we take a closer look at this new network paradigm and

motivate the need for rethinking the way cellular networks are perceived and

modeled. The focus will be on highlighting the increasing relevance of random

spatial models, especially to capture the irregular deployments of small cells.
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1.4 Increasing Relevance of Random Spatial Models

Cellular networks are becoming increasingly complex due to the deploy-

ment of multiple classes of BSs that have distinctly different traits [35,36]. For

example, a typical 3G or 4G cellular network already has traditional macrocel-

lular BSs that are long-range and guarantee near-universal coverage; operator-

managed picocells [37, 38] and distributed antennas [39–42] that have a more

compact form factor, a smaller coverage area, and are used to increase capac-

ity while eliminating coverage deadzones; and femtocells, which have emerged

more recently and are distinguished by their end-user installation in arbitrary

locations, very short range, and possibility of having a closed-subscriber group

[29, 43, 44]. A typical HetNet utilizing a mix of macro, pico and femtocells

is illustrated in Figure 1.4. This evolution toward heterogeneity will continue

to accelerate due to crushing demands for mobile data traffic caused by the

proliferation of data-hungry devices and applications.

An immediate effect of the increasing heterogeneity and uncertainty of

current deployments on the study of cellular networks is that it has limited

the applicability of classical cellular models based mainly on the regularity

assumption of BS locations, such as deterministic grid-based models [7] and

Wyner model [45], to HetNets. For instance, consider Figure 1.5, where we

compare the hexagonal grid model with the actual 4G deployment in a sprawl-

ing land-locked city, and a typical 2-tier deployment. While the actual sin-

gle tier deployment already deviates significantly from the deterministic grid

model, the addition of small cells changes the coverage footprints dramatically.
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(a) Hexagonal grid model. (b) Actual 4G deployment.

(c) Two tier HetNet.

Figure 1.5: (a) Hexagonal grid model with the locations of macrocells indicated
by red circles. (b) Coverage regions with macrocell locations drawn from an
actual 4G deployment [1]. (c) Coverage regions in a two tier HetNet with
macrocell following the same locations as in (b), and small cells (denoted by
smaller circles) overlaid randomly.
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Figure 1.6: Illustration of Wyner model, where the channel gain from the
desired BS is normalized to one, and channel gain from each interfering BS is
modeled as a constant a < 1.

Mathematically, as discussed in detail in Chapter 2, the coverage plots in case

of HetNets can no longer be characterized by a standard Voronoi tessellation

due to the differences in the transmit powers across different classes of BSs [5].

Instead, they closely resemble a circular Dirichlet tessellation, also called a

multiplicatively weighted Voronoi diagram [46]. Comparing Figures 1.5a and

1.6, we note that the Wyner model is even more simplistic. We will revisit

this comparison in Chapter 2.

As evident from Figure 1.5, the experience of mobile users in terms of

coverage, rate, and reliability would be quite different in the HetNets as com-

pared to the familiar macrocellular networks. To capture key characteristics

of HetNets and facilitate a realistic performance evaluation, we propose a new

and more appealing way of modeling HetNets by using random spatial models,

where the locations of the BSs are assumed to form a realization of a spatial

point process [1–4, 47]. In comparison to the conventional models, these are

especially attractive in the context of HetNets due to their: (i) realism: to cap-

ture the inherent uncertainty in deployments involving both operator and user
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deployed BSs, (ii) scalability: to model ever-increasing heterogeneity in the

infrastructure elements and, (iii) tractability: to gain system design insights

using tools from stochastic geometry, as demonstrated for a simple single-tier

setup earlier in this chapter in Section 1.2.

1.5 Contributions

There are two main challenges in understanding HetNets: (i) to develop

system models that capture the heterogeneity in infrastructure, irregularity in

the BS locations, and other key characteristics of these networks with enough

accuracy to be realistic but enough simplicity to be useful, and (ii) to develop

corresponding analytical frameworks to study metrics like outage probability

as a function of an arbitrary SINR, loading across different tiers, and average

rate, with the end goal of better understanding the fundamental system design

principles for HetNets. This dissertation develops a comprehensive framework

to tackle these challenges. The main contributions are summarized below.

New tractable model for K-tier HetNets. In Chapter 2, we de-

velop a tractable, flexible, and accurate model for a downlink HetNet consist-

ing of K tiers of randomly located BSs, where each tier may differ in terms

of average transmit power, supported data rate and BS density. Assuming a

mobile user connects to the strongest candidate BS in terms of received power

and a fairly general channel model, we derive an expression for the probability

of coverage (equivalently outage) over the entire network under both open and

closed access. It assumes a strikingly simple closed-form when the resulting
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SINR is greater than 1 and the background noise is neglected. For external val-

idation, we compare against an actual LTE network (for tier 1) with the other

K−1 tiers being modeled as independent PPPs and show that the closed form

expression is accurate down to about −4 dB. We further derive the average

rate achieved by a typical mobile and the average load on each tier of BSs. One

interesting observation for interference-limited open access networks is that at

a given SINR, adding more tiers and/or BSs neither increases nor decreases

the coverage probability when all the tiers have the same target-SINR.

Incorporating load in random spatial models for HetNets. A

major limitation of the K-tier model proposed in Chapter 2 and all its ex-

tensions [48–56] so far is the neglect of network traffic and load: all BSs are

assumed to always be transmitting. Small cells in particular will have a lighter

load than macrocells, and so their contribution to the network interference is

probably significantly overstated in a fully loaded model. Chapter 3 incorpo-

rates a flexible notion of BS load by introducing a new idea of conditionally

thinning the interference field. For a K-tier HetNet model developed in Chap-

ter 2 where BSs across tiers differ in terms of transmit power, supported data

rate, deployment density, and now load, we derive the coverage probability

for a typical mobile, which connects to the strongest BS signal. Conditioned

on this connection, the interfering BSs of the ith tier are assumed to trans-

mit independently with probability pi, which models the load. Our analysis

concretely demonstrates that the coverage probability always increases when

lightly loaded small cells are added to the existing macrocellular networks.
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This is a useful rebuttal to the viewpoint that unplanned infrastructure might

bring down a cellular network due to increased interference.

Modeling non-uniform user distributions. In Chapters 2 and 3,

the analysis is performed at a typical user located at the origin assuming user

distribution to be uniform. At least one shortcoming of this approach is its

inability to model non-uniform user distributions, especially when there is de-

pendence in the user and the BS locations. To facilitate analysis in such cases,

we develop a new method of sampling users by using the same idea of con-

ditionally thinning the BS point process as in Chapter 3 and show that the

resulting framework can be used as a tractable generative model to study cur-

rent capacity-centric deployments, where the users are more likely to lie closer

to the BSs. Since this analysis is a direct application of the ideas developed

in Chapter 3, we present it in Appendix B.

Modeling and performance analysis of MIMO HetNets. Due

to the relative maturity of both multiple antenna technique and HetNets, both

in academic research and cellular standards, it is clear that the two will co-

exist and complement each other in the future wireless standard. Therefore,

we extend the baseline model developed in Chapter 2 to study multi-antenna

HetNets in Chapter 4. In addition to the transmit power, target SIR and de-

ployment density, the BSs across tiers may differ in terms of the number of

transmit antennas and the type of multi-antenna transmission. In particular,

we consider and compare space division multiple access (SDMA), single user

beamforming (SU-BF), and baseline single-input single-output (SISO) trans-
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mission. For this general model, the main contributions are (i) ordering results

for both coverage probability and per user rate in closed form for any BS dis-

tribution for the three considered techniques, using novel tools from stochastic

orders, (ii) upper bounds on the coverage probability assuming a Poisson BS

distribution, and (iii) a comparison of the area spectral efficiency (ASE). The

analysis concretely demonstrates, for example, that for a given total number

of transmit antennas in the network, it is preferable to spread them across

many single-antenna BSs vs. fewer multi-antenna BSs. Another observation

is that SU-BF provides higher coverage and per user data rate than SDMA,

but SDMA is in some cases better in terms of ASE.

Generalized cell selection model and effect of shadowing on

downlink SIR and rate distributions. All the prior work on random spa-

tial models for HetNets, including Chapters 2 and 3, either ignores the impact

of channel randomness on cell selection or lumps all the sources of randomness

into a single variable, with cell selection based on the instantaneous signal

strength, which is unrealistic. In Chapter 5, we consider both small-scale

fading and long-term shadowing, and characterize the downlink SIR and rate

distributions at a typical user, where shadowing, following any general distri-

bution, impacts cell selection while fading does not. As an application of the

results, we study the impact of shadowing on load balancing in terms of the

optimal per-tier selection bias needed for rate maximization. We show that

in certain regimes shadowing naturally balances load across various tiers and

hence reduces the need for artificial cell selection bias.

23



Fundamentals of HetNets with energy harvesting. The possi-

bility of having a self-powered BS is becoming realistic due to several parallel

trends, such as the increasing relevance of low-power BSs, and the cost ef-

fectiveness of energy harvesting techniques, such as solar power, due both to

technological improvements as well as market forces, e.g., increasing costs and

taxes on conventional power sources, and subsidies and regulatory pressure for

greener techniques. In Chapter 6, we develop a new tractable model for K-tier

HetNets, where each BS is powered solely by a self-contained energy harvest-

ing module. The BSs across tiers differ in terms of the energy harvesting rate,

energy storage capacity, transmit power and deployment density. Since a BS

may not always have enough energy, it may need to be kept OFF and allowed

to recharge while nearby users are served by neighboring BSs that are ON. We

show that the fraction of time a kth tier BS can be kept ON, termed avail-

ability ρk, is a fundamental metric of interest. Using tools from random walk

theory, fixed point analysis and stochastic geometry, we characterize the set of

K-tuples (ρ1, ρ2, . . . ρK), termed the availability region, that is achievable by

general uncoordinated operational strategies, where the decision to toggle the

current ON/OFF state of a BS is taken independently of the other BSs. If the

availability vector corresponding to the optimal system performance, e.g., in

terms of rate, lies in this availability region, there is no performance loss due to

the presence of unreliable energy sources. As a part of our analysis, we model

the temporal dynamics of the energy level at each BS as a birth-death process,

derive the energy utilization rate, and use hitting/stopping time analysis to
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prove that there exists a fundamental limit on ρk that cannot be surpassed by

any uncoordinated strategy.

1.6 Organization

The technical contributions of this dissertation are covered in Chap-

ters 2 through 6. Chapter 2 describes a novel baseline downlink model for

the analysis of K-tier HetNets. Simple expressions for the downlink coverage

and rate experienced by a typical user are derived using tools from stochastic

geometry. Chapter 3 extends the baseline model and proposes a flexible load

model for HetNets by introducing a new idea of conditional thinning. In Ap-

pendix B, the same idea of conditional thinning is used to develop a tractable

generative model for current capacity-centric deployments, where the users

are more likely to lie closer to the BSs. Chapter 4 studies multi-antenna Het-

Nets, where the number of transmit antennas and the transmission strategy

may differ across tiers. New tools with foundations in stochastic orders are

developed to compare the performance of various multi antenna transmission

strategies. Chapter 5 presents a generalized cell selection model that differ-

entiates between small-scale fading and long-term shadowing. Downlink rate

distribution at a typical user is characterized assuming shadowing, following

any general distribution, impacts cell selection while fading does not. The fi-

nal contribution of this dissertation is presented in Chapter 6, where we study

HetNets with self-power BSs that may additionally differ across tiers in terms

of energy harvesting rate and energy storage capacity. A new notion of avail-
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ability region is introduced to study the “optimality” of such networks. The

dissertation concludes with Chapter 7, which summarizes the key contributions

and discusses promising future directions of research in HetNets.
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Chapter 2

Modeling and Analysis of K-Tier Downlink

HetNets

A straightforward unifying model for HetNets would consist of K spa-

tially and spectrally coexisting tiers, where each tier is distinguished by its

transmit power, base station (BS) density, and data rate. For example, tra-

ditional BSs (first tier) would typically have a much higher transmit power

and lower density and offered rate than the lower tiers (e.g. pico and fem-

tocells). To visualize what the coverage areas in such a network might look

like, consider Figures 2.1-2.4, which show average power-based (equivalently

average SINR-based) coverage regions for some plausible two and three tier

networks. Clearly, the coverage, rate, and reliability that mobile users experi-

ence in such networks can be expected to be quite different than in traditional

cellular networks that use familiar models like the hexagonal grid.

The objective of this chapter is to provide a flexible baseline model for

HetNets, and to show how it can be used to provide tractable and reasonably

accurate analysis of important metrics like the SINR statistics, outage prob-

ability and average rate. Those familiar with cellular network analysis will

recognize that this goal is fairly ambitious since such results have been hard
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to come by even for traditional single tier cellular networks.

2.1 Related Work and Motivation

The study and design of conventional one-tier cellular networks has of-

ten tended towards two extremes. For analysis and academic research, very

simplistic models are typically employed in order to maintain tractability, while

for design and development (e.g. in industry) complex system-level simula-

tions with a very large number of parameters are generally used. This has

made it difficult to estimate the actual gain that new techniques developed

by researchers might provide in real systems. Well-known examples include

multiuser detection [57], multiuser MIMO [58], and BS cooperation [59,60]; all

of which promised much larger gains in theory than have been achieved thus

far in practice [61,62].

A popular analytical model for multicell systems is the Wyner model

[45], which assumes channel gains from all (usually only 1 or 2) interfering

BSs are equal and thus constant over the entire cell. Such a model does not

distinguish between cell edge and interior users and in most cases does not

even have a notion of outage since SINR is fixed and deterministic. It can be

tuned to reasonably model average metrics in a system with lots of averaging,

such as the CDMA uplink, but is not accurate in general and particularly

for systems with 1 or 2 strong interferers, like a typical OFDMA-based 4G

network [63]. Another common approach is to consider only a small number

of interfering cells (as few as one) and abstract the desired and interfering
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BSs to an interference channel [64,65]. Finally, perhaps the most popular and

accepted model is the two-dimensional hexagonal grid model. The grid model

is frequently used as the basis of system-level simulations but analysis is not

generally possible [66–68]. This was also demonstrated in Chapter 1. Addi-

tionally, both the scalability and the accuracy of grid model are questionable

in the context of network heterogeneity (see Figures 2.1-2.4).

A less accepted model is to allow the locations of the BSs to be drawn

from a stochastic point process [2–4]. Such a model seems sensible for fem-

tocells – which will take up unknown and unplanned positions – but perhaps

dubious for the higher tiers which are centrally planned. Nevertheless, as Fig-

ures 2.1-2.4 show, the difference between randomly placed and actual planned

locations may not be as large as expected, even for tier 1 macro BSs. Indeed,

the recent work [1] showed that for a one-tier network, even with the BS loca-

tions drawn from a Poisson Point Process (PPP), the resulting network model

is about as accurate as the standard grid model, when compared to an actual

4G network. Importantly, such a model allows useful mathematical tools from

stochastic geometry to be brought to bear on the problem [69–72], allowing a

tractable analytical model that is also accurate.

2.2 Contributions and Outcomes

General K-tier downlink model. In Section 2.3, we define a tractable

model for downlink multi-tier networks that captures many (but not all) of

the most important network parameters. The model consists of K indepen-
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dent tiers of PPP distributed BSs, where each tier may differ in terms of the

average transmit power, the supported data rate, and the BS density (the

average number of BSs per unit area). The plausibility of the model versus

planned tiers is verified through comparisons in Section 2.6 with an actual 4G

macro-cell (1 tier) network with randomly placed lower tiers.

SINR distribution, coverage probability (Pc), outage probability

(1− Pc). Assuming (i) a mobile user connects to the strongest candidate BS,

(ii) that the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater

than 1 when in coverage, and (iii) Rayleigh fading, we derive an expression for

the probability of coverage (equivalently outage) over the entire network under

both open and closed access, which allows a remarkably simple closed-form in

the high SINR regime (where interference power dominates noise power) and

is shown to be accurate down to -4dB even under weaker assumptions. When

all tiers have the same target SINR threshold, the coverage probability is the

complementary cumulative distribution function (CCDF) of effective received

SINR for an arbitrary randomly located mobile user. For completeness, in

Appendix A we derive general expression for the probability of coverage that

is applicable to any given target SINR, i.e., the assumption SINR > 1 is relaxed.

This generalization, however, comes at a significant loss of tractability.

Average data rate in coverage, ergodic rate and load per tier.

We derive the average data rate experienced by a randomly chosen mobile when

it is in coverage, assuming interference is treated as noise but otherwise that

the Shannon bound is achieved, i.e. the average rate in coverage is E[log(1 +
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SINR)|coverage]. This expression is readily computable but involves an integral

so is not closed-form. Using the general coverage probability result derived in

Appendix A, an exact expression for ergodic rate, i.e., E[log(1 +SINR)], is also

derived.

We also provide the average load per tier, which is the average fraction

of users served by the BSs belonging to a particular tier or equivalently the

probability that a mobile user is served by that tier. In line with intuition,

the per-tier load is directly proportional to the density of its BSs and their

average transmit power, and inversely proportional to its SINR target.

Key design insights. Some interesting observations can be made

from these results. For example, we show that when the SINR targets are the

same for all tiers in a dense network (thermal noise power negligible compared

to interference power), the coverage (and hence outage) probability does not

depend upon the number of tiers or the density of BSs in open access, but

that Pc generally decreases with both in closed-access. This means that the

trend towards increased density and heterogeneity and the resulting increase in

interference need not reduce the typical SINR, as is commonly feared. On the

contrary, aggregate network throughput will increase linearly with the number

of BSs since the SINR statistics will stay the same per cell.

2.3 System Model

We model a HetNet as a K-tier cellular network where each tier models

the BSs of a particular class, such as those of femtocells or pico-cells. The BSs
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across tiers may differ in terms of the transmit power, the supported data

rate and their spatial density. We assume that the BSs in the i-th tier are

spatially distributed as a PPP Φi of density λi, transmit at power Pi, and

have a SINR target of βi. More precisely a mobile can reliably communicate

with an ith tier BS located at xi ∈ Φi only if its downlink SINR with respect

to that BS is greater than βi. Thus, each tier can be uniquely defined by the

tuple {Pi, βi, λi}.

The mobiles are also modeled by an independent PPP Φm of density

λm. Without loss of generality, we conduct analysis on a typical mobile user

located at the origin. The fading (power) between a BS located at point x

and the typical mobile is denoted by hx and is assumed to be i.i.d exponential

(Rayleigh fading). More complex channel distributions can be considered in

this framework, e.g. in [1] a general interference fading model capable of

handling any statistical distribution was used, and using the Fourier integral

techniques in [73] general fading to the selected BS can also considered. The

standard path loss function is given by l(x) = ‖x‖−α, where α > 2 is the path

loss exponent. Hence, the received power at a typical mobile user from a BS

located at point xi ∈ Φi is Pihxi‖xi‖−α, where hxi ∼ exp(1). The resulting

SINR expression assuming the user connects to this BS is

SINR(xi) =
Pihxi‖xi‖−α∑K

j=1

∑
x∈Φj\xi Pjhx‖x‖−α + σ2

, (2.1)

where σ2 is the constant additive noise power. One of the ways to set the

value of σ2 is according to the desired received SNR at the cell-edge. We will
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comment more on this in Section 2.6, where we show that self-interference

dominates noise in the typical HetNets. We assume each mobile user connects

to its strongest BS instantaneously, i.e., the BS that offers the highest received

SINR. Mathematically the typical node at the origin is in coverage if

max
x∈Φi

SINR(x) > βi,

for some 1 ≤ i ≤ K. An assumption that greatly simplifies the analysis is that

βi > 1 ( 0 dB). Lemma 1 shows that under this assumption, at most one BS

in the entire network can provide SINR greater than the required threshold.

Although some users in commercial cellular networks indeed have operating

SINR below 0 dB, they are in a distinct minority (cell edge users) and in Sec-

tion 2.6 we show numerically that this model holds very accurately at least to

−4 dB, which covers cell edge users as well. As demonstrated in Appendix A,

the relaxation of this assumption entails significant loss in tractability. There-

fore, for the simplicity of exposition, we will assume βi > 0 dB for all the

tiers in the rest of the chapter, with the corresponding general results given

in Appendix A. The following Lemma characterizes the number of potential

BSs that a mobile can connect to and will be used in the later sections.

Lemma 1. Given positive real numbers {a1, a2 . . . an}, which correspond to

the received power from each BS at the typical mobile user and defining ci =

ai∑
j 6=i aj+σ

2 , which corresponds to the SINR of the ith BS, at most m ci’s can be

greater than 1/m for any positive integer m.
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Proof. Since SINR < SIR for all the BSs, defining bi = ai∑
j 6=i aj

as the SIR

corresponding to the ith BS, it suffices to show that at most m bi’s can be

greater than 1/m for any positive integer m. This is shown below.

bi =
ai∑
j 6=i aj

=
ai∑

j aj − ai

⇒ bi
1 + bi

=
ai∑
j aj

⇒
n∑
i=1

1

1/bi + 1
= 1. (2.2)

We first prove the result for m = 1 (by contradiction) and then show that it

can be trivially extended to the case of general m. We first observe that (2.2)

is satisfied if only one of the bi’s is greater than 1. Now assume that two bi’s are

greater than one and without loss of generality, assume that they are b1 and

b2. This implies 1/b1 and 1/b2 ∈ (0, 1). Therefore, 1
1/bi+1

and 1
1/bi+1

∈ (1/2, 1).

Thus,

n∑
i=1

1

1/bi + 1
=

2∑
i=1

1

1/bi + 1
+

n∑
i=3

1

1/bi + 1
,

> 1 +
n∑
i=3

1

1/bi + 1
, (2.3)

which is in contradiction with (2.2). Since (2.2) does not even hold for two

bi’s greater than one, it proves that the only one of the bi’s can be greater

than one. Similarly for the case of general m, it is easy to observe that (2.2)

is trivially satisfied if at most m of the bi’s are greater than 1/m. Now assume

that m + 1 bi’s are greater than 1/m and without loss of generality, assume
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that they are b1, b2, . . . , bm+1. Proceeding as in (2.3),

n∑
i=1

1

1/bi + 1
> 1 +

n∑
i=m+2

1

1/bi + 1
, (2.4)

which is in contradiction to (2.2). Therefore, at most m bi’s can be greater

than 1/m.

2.3.1 Coverage Regions

Before going into the analysis and main results, it may be helpful to

first build some intuition about the proposed model, and its resulting coverage

regions. The illustrative HetNet coverage regions can be visually plotted in two

steps, resulting in Figures 2.1-2.4. First, we randomly place K different types

of BSs on a 2-D plane according to the aforementioned independent PPPs.

Ignoring fading, the space is then fully tessellated following the maximum

SINR connectivity model, which is equivalent to maximum SIR and maximum

power connectivity models in the absence of fading. Please note that in reality

the cell boundaries are not as well defined as shown in these coverage regions

due to fading. Therefore, these plots can be perceived as the average coverage

footprints over a period of time so that the effect of fading is averaged out.

Due to the differences in the transmit powers over the tiers, these average

coverage plots do not correspond to a standard Voronoi tessellation (also called

a Dirichlet tessellation) [74]. Instead, they closely resemble a circular Dirichlet

tessellation, also called a multiplicatively weighted Voronoi diagram [46]. The

coverage regions for a two-tier network – for example comprising macro and

35



femtocells – are depicted in Figures 2.1 and 2.2 for two cases: 1) the macro-

cell BSs are distributed according to PPP (our model), and 2) the macro-cell

BSs correspond to an actual 4G deployment over a relatively flat urban region.

The femtocells are distributed according to an independent PPP in both cases.

Qualitatively, the coverage regions are quite similar in the two cases.

In Figures 2.3 and 2.4, the coverage regions are now shown with an

additional pico-cell tier. As is the case in the actual networks, we assume that

the macro-cells have the highest and the femtocells have the lowest transmit

power, with pico-cells somewhere in between. For example, in LTE [75], typ-

ical values are on the order of 50W, .2W, and 2W, respectively. Therefore,

femtocell coverage regions are usually much smaller than the other two tiers,

particularly when they are nearby a higher power BS. Similarly, we observe

that the coverage footprint of pico-cells increases when they are farther from

the macro BSs. These observations highlight the particularly important role

of smaller cells where macrocell coverage is poor.

2.3.2 Applicability of the Model

The model is applicable both to non-orthogonal (CDMA) and orthogo-

nal (TDMA, OFDMA) cellular networks. For CDMA networks, although the

received SINR is generally much smaller than 1, the post-despreading SINR,

which is what determines coverage/outage, is often greater than or at least

close to 1, so the assumption βi > 1 and Lemma 1 are still reasonable if

the interference term is divided by the spreading factor. The analysis is for
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Figure 2.1: Coverage regions in a two-tier network as per the model used in
this chapter. Both macro (large circles) and femto (small dark squares) BSs
are distributed as independent PPPs with P1 = 1000P2 and λ2 = 5λ1.

Figure 2.2: Coverage regions in a two-tier network where Macro (tier-1) BS
locations (large circles) correspond to actual 4G deployment. Femto BSs (small
dark squares) are distributed as a PPP (P1 = 1000P2 and λ2 = 5λ1).
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Figure 2.3: Close-up view of coverage regions in a three-tier network. All the
tiers, i.e., tier-1 macro (large circles), tier-2 pico (light triangles) and tier-3
femto (small dark squares), are modeled as independent PPPs. P1 = 100P2 =
1000P3, λ3 = 4λ2 = 8λ1.

Figure 2.4: Coverage regions in a three-tier network where macro BS locations
(large circles) now correspond to actual 4G deployment. Other parameters are
same as Figure 2.3.
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a single frequency band and assumes that all BSs are transmitting continu-

ously in all time slots at constant power, although if some fraction f of time

slots were not used (at random), then the resulting density of interfering BSs

would simply be (1 − f)λ and the analysis could be extended. In OFDMA-

based networks, it is desirable to move strongly interfering neighbors or tiers

to orthogonal resources in time and/or frequency and so the coverage can be

improved. Similarly, additional enhancements like opportunistic scheduling

or multiple antenna communication should increase coverage and/or rate and

this framework could be extended to indicate the gains of different approaches.

Although we do not explicitly consider antenna sectoring, it can be easily in-

corporated in the current model if sectoring is done randomly. If the beam

is partitioned into n equal sectors, the density of interfering BSs reduces by

a factor of n because the probability that the beam of any BS would point

towards a randomly chosen BS is 1/n. Cellular engineers will note that fur-

ther details are missing from this model. In addition to shadowing, we do

not consider frequency reuse, power control, or any other form of interference

management, leaving these to future extensions. In short, this is a baseline

tractable model for HetNets.

2.4 Coverage Probability and Average Load per Tier

A typical mobile user is said to be in coverage if it is able to connect to at

least one BS with SINR above its threshold. In the case when all the tiers have

same SINR threshold β, coverage probability is precisely the complementary
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cumulative distribution function (CCDF) of the effective received SINR, outage

being the CDF, i.e., 1− CCDF. With this understanding, we now derive the

probability of coverage for a randomly located mobile user both for open and

closed access networks (defined below). Using these results, we also derive a

measure of average load per tier in terms of the fraction of users served by

each tier.

2.4.1 Open Access

We first assume the open access strategy where a typical mobile user

is allowed to connect to any tier without any restriction. Under the current

system model, this strategy reduces to choosing the strongest BS, i.e., the one

that delivers the maximum received SINR.

2.4.1.1 Coverage Probability

The main result for the probability of coverage in open access networks

is given by Theorem 1.

Theorem 1 (General case). When βi > 1, the coverage probability for a typical

randomly located mobile user in open access is Pc({λi}, {βi}, {Pi}) =

K∑
i=1

λi

∫
R2

exp
(
− C(α)

(
βi
Pi

)2/α

‖xi‖2

K∑
m=1

λmP
2/α
m

)
exp

(
− βiσ

2

Pi
‖xi‖α

)
dxi,

(2.5)

where C(α) = 2π2 csc(2π
α

)α−1.

Proof. For notational simplicity, denote the set {1, 2, . . . K} by K. The cover-
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age probability in a K-tier network under maximum SINR connectivity model

can be derived as follows:

Pc({λi}, {βi}, {Pi})

= P

( ⋃
i∈K,xi∈Φi

SINR(xi) > βi

)

= E

[
1

( ⋃
i∈K,xi∈Φi

SINR(xi) > βi

)]
(a)
=

K∑
i=1

E
∑
xi∈Φi

[1 (SINR(xi) > βi)]

(b)
=

K∑
i=1

λi

∫
R2

P
(
Pihxil(xi)xi)

Ixi + σ2
> βi

)
dxi

(c)
=

K∑
i=1

λi

∫
R2

LIxi

(
βi

Pil(xi)

)
e
−βiσ

2

Pil(xi)xi) dxi, (2.6)

where (a) follows from Lemma 1 under the assumption that βi > 1 ∀ i, (b)

follows from Campbell Mecke Theorem [69], and (c) follows from the fact that

the channel gains are assumed to be Rayleigh distributed. Here LIxi
(.) is the

Laplace transform of the cumulative interference from all the tiers when the

randomly chosen mobile user is being served by the ith tier. Since the point

processes are stationary, the interference does not depend on the location xi.

Therefore, we denote LIxi
by LIi , which is given by

LIi (s) =
K∏
j=1

EIi

 ∏
xj∈Φj/xi

exp
(
−sPjhxj l(xj)

) .
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Using the independence of the fading random variables LIi (s) equals

K∏
j=1

EΦj

 ∏
xj∈Φj/xi

Eh
[
exp

(
−sPjhxj l(xj)

)]
(a)
=

K∏
j=1

EΦj

 ∏
xj∈Φj/xi

1

1 + sPjl(xj)


(b)
=

K∏
j=1

exp

(
−λi

∫
R2

(
1− 1

1 + sPj||xj||−α

)
dxj

)
(c)
=

K∏
j=1

exp

(
−2πλi(sPj)

2/α

∫ ∞
0

r

∫ ∞
0

e(−t(1+rα))dt dr

)
, (2.7)

where (a) follows from the Rayleigh fading assumption (i.e., h ∼ exp(1)), (b)

follows from probability generating functional (PGFL) of PPP [69] and, (c)

results from algebraic manipulation after converting from Cartesian to polar

coordinates Using some properties of Gamma function, (2.7) can be further

simplified to

LI(s) = exp

(
−s2/αC(α)

K∑
i=1

λiP
2/α
i

)
, (2.8)

where C(α) =
2π2 csc( 2π

α
)

α
. Using (2.6) and (2.8) the coverage probability

Pc({λi}, {βi}, {Pi}) is

K∑
i=1

λi

∫
R2

e
−
(
βi
Pi

)2/α
C(α)||xi||2

∑K
m=1 λmP

2/α
m e

−βiσ
2

Pi
||xi||αdxi,

which completes the proof.

Theorem 1 gives a simple and fairly general expression for coverage

probability. For better understanding of the proof, we now provide a brief
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description of the main steps. First recall that a mobile user is in coverage if

it is able to connect to at least one BS with SINR above its threshold. Now

assuming, βi > 1, ∀ i, we know from Lemma 1 that a mobile can connect to at

most one BS. Therefore, Pc can now be defined as the sum of the probabilities

that each BS connects to the mobile (with the understanding that all the events

are mutually exclusive and at most one of them happens at any time). This

leads to a sum of probabilities over PPP, which can be converted to a simple

integral of Laplace transform of cumulative interference using Campbell-Mecke

Theorem [69]. A closed form expression for the Laplace transform can be

evaluated in two main steps. Firstly, the nature of interference function (sum

over PPP) leads to a product form for its Laplace transform. Using probability

generating functional (PGFL) of PPP [69] and the fact that fading power is

exponentially distributed, we arrive at the closed form expression for Laplace

transform which directly leads to the final result of the Theorem. This result

can be simplified further for the interference-limited case, where it reduces

to a remarkably simple closed-form expression given by Corollary 1. When

the system is interference-limited, SINR and signal-to-interference-ratio (SIR)

can be used interchangeably since thermal noise is negligible compared to the

interference power. However, for concreteness we will henceforth use SIR when

assuming interference-limited network.

Corollary 1 (No-noise). In an interference limited network, i.e., when self-

interference dominates thermal noise, the coverage probability of a typical mo-
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bile user simplifies to

Pc({λi}, {βi}, {Pi}) =
π

C(α)

∑K
i=1 λiP

2/α
i β

−2/α
i∑K

i=1 λiP
2/α
i

, βi > 1.

Proof. Follows from Theorem 1 with σ2 = 0.

The simplicity of this result leads to some important observations.

Firstly, setting K = 1 leads to the single-tier case, where the coverage proba-

bility is given by:

Pc(λ, β, P ) =
π

C(α)β2/α
. (2.9)

From (2.9), we note that the Pc in an interference-limited single-tier network is

independent of the density of the BSs, and is solely dependent upon the target

SIR. This is consistent with [1], where a similar observation was made for a

single-tier network using nearest neighbor connectivity model. The intuition

behind this observation is that the change in the density of BSs leads to the

change in the received and interference powers with the same factor and hence

the effects cancel.

From Corollary 1, it also follows that, if βi = β, ∀ i, in an interference-

limited network then Pc({λi}, β, {Pi}) = π
C(α)β2/α . This is perhaps an un-

expected result since it states that the coverage probability is not affected

by the number of tiers or their relative densities and transmit powers in an

interference-limited network. In fact, it is exactly the same as that of the

single-tier case. Therefore, more BSs can be added in any tier without affect-

ing the coverage and hence the net network capacity can be increased linearly
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with the number of BSs. The intuition behind this result is that the decision

of a mobile user to connect to a BS depends solely on the received SIR from

that BS and a common target SIR, unlike the general case where it also de-

pends upon the tier to which the BS belongs. Thus, the mobile user does not

differentiate between the tiers when the SIR thresholds are the same. Surpris-

ingly, this leads to a situation similar to the one discussed for the single-tier

case above, where the change in the received power due to the change in the

density or the transmit power of BSs of some tier is equalized by the change

in the interference power. Significantly, this implies that the interference from

smaller cells, such as femtos and picos, need not decrease network performance

in open access networks.

2.4.1.2 Average Load per Tier

The average load on each tier is defined as the average fraction of users

in coverage served by that tier. This can also be interpreted as the average

fraction of time for which each mobile is connected to the BSs belonging to a

particular tier. The main result for the average load per tier in open access is

given by Proposition 1.

Proposition 1. The average fraction of users served by jth tier (also the

average load on jth tier) in open access is

N̄j =
λj

Pc({λi}, {βi}, {Pj})

∫
R2

exp
(
− C(α)

(
βi
Pi

)2/α

||xi||2
K∑
m=1

λmP
2/α
m

)
exp

(
− βiσ

2

Pi
||xi||α

)
dxi. (2.10)
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Proof. Let Bn ∈ R2 denote an increasing sequence of convex sets with Bn ⊂

Bn+1 and limn→∞ |Bn| = ∞. For this proof, we denote SIRxm(xb) as the

received SIR when the mobile is located at xm 6= 0 connects to BS located at

xb. Please recall that the subscript is dropped and SIR is denoted as SIR(xb)

when the mobile user is located at the origin. The average fraction of users

served by the jth tier can now be expressed as:

N̄j = lim
n→∞

1

|Bn|
∑

xm∈Bn
⋂

Φm

1

 ⋃
xj∈Φj

SINRxm(xj) > βj

∣∣∣ ⋃
i∈K,xi∈Φi

(SINRxm(xi) > βi)


(a)
= P!o

 ⋃
xj∈Φj

SINR(xj) > βj

∣∣∣ ⋃
i∈K,xi∈Φi

(SINR(xi) > βi)



(b)
=

P

( ⋃
xj∈Φj

SINR(xj) > βj,
⋃

i∈K,xi∈Φi

(SINR(xi) > βi)

)
P
(⋃

i∈K,xi∈Φi
(SINR(xi) > βi)

)
=

P
(⋃

xj∈Φj
SINR(xj) > βj

)
P
(⋃

i∈K,xi∈Φi
(SINR(xi) > βi)

) (2.11)

where (a) follows from the stationarity and the ergodicity of PPP [69]. P!o

denotes the reduced Palm distribution of a PPP and (b) follows from the Sliv-

inak’s theorem [69,76] and Bayes rule. Noting that P
(⋃

xj∈Φj
SINR(xj) > βj

)
is the probability of coverage with a single tier j, the result follows from The-

orem 1.

In an interference-limited scenario, this result reduces to a simple closed

form expression, which is given by the following Corollary.
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Corollary 2. When noise is neglected, i.e., σ2 = 0,

N̄j =
λjP

2/α
j β

−2/α
j∑K

i=1 λiP
2/α
i β

−2/α
i

.

From Corollary 2, we observe that the load on each tier is directly

proportional to the quantity λjP
2/α
j β

−2/α
j . In line with intuition, a tier will

serve more users if it has a higher BS density or higher transmit power or

a lower SIR threshold. When the thresholds of all tiers are equal to β and

the transmit powers of all BSs equal to P , the average load on each tier is

N̄j =
λj∑K
i=1 λi

. Hence, as expected the average load on each tier is directly

proportional to the density of its BSs.

2.4.2 Closed Access

Under closed access, also known as a closed subscriber group, a mobile

user is allowed to connect to only a subset of tiers and the rest of the tiers act

purely as interferers. The motivation for closed access particularly applies to

privately owned infrastructure, such as femtocells or perhaps custom picocells

mounted on a company’s roof to improve service to their staff. The desirable

aspects of closed access can include protection of finite backhaul capacity,

security, and the reduction in the frequency of handoffs experienced by mobile

users and the associated overhead required. In the context of our model, closed

access means that if the strongest BS lies in the restricted tier, it by definition

leads to an outage event irrespective of the received SINR associated with that

BS. Furthermore, since closed access is a constraint on connectivity, it would
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naturally lead to reduced coverage probability. This intuition is verified in the

following discussion.

2.4.2.1 Coverage Probability

The main result of coverage probability in closed access networks is

given by Lemma 2.

Lemma 2. When a typical mobile user is allowed to connect to only a subset

B ⊂ {1, 2, , . . . , K}, the coverage probability for closed access is

Pc({λi}, {βi}, {Pi}) =
∑
i∈B

λi

∫
R2

exp
(
− C(α)

(
βi
Pi

)2/α

‖xi‖2

K∑
m=1

λmP
2/α
m

)
exp

(
− βiσ

2

Pi
‖xi‖α

)
dxi. (2.12)

Proof. The coverage probability is

Pc({λi}, {βi}, {Pi}) = P

( ⋃
i∈B,xi∈Φi

SINR(xi) > βi

)
(a)
=
∑
i∈B

E
∑
xi∈Φi

[1 (SINR(xi) > βi)] ,

where (a) again follows from Lemma 1 under the assumption that βi > 1.

Following the same steps as the proof of Theorem 1, we arrive at the final

result.

The following corollary specializes from Lemma 2 to interference-limited

HetNets.

48



Corollary 3. When σ2 = 0,

Pc({λi}, {βi}, {Pi}) =
π

C(α)

∑
i∈B λiP

2/α
i β

−2/α
i∑K

i=1 λiP
2/α
i

.

If the threshold of each tier to be same (and equal to β) and the transmit

power of each tier to be same (and equal to P ), the coverage probability is

π
C(α)β2/α

∑
i∈B λi∑K
i=1 λi

. So, if the thresholds and transmit powers of all the tiers are

same, closed access has a lower coverage than open access by a factor of
∑
i∈B λi∑K
i=1 λi

.

2.4.2.2 Average Load per Tier

The main result for the average load per tier under closed access is given

by Proposition 2. The proof directly follows from the proof of Proposition 1

with the understanding that the coverage event would now be defined by only

the “allowed” tiers.

Proposition 2. The average fraction of users in coverage served by jth tier

(also the average load on jth tier) in closed access is

N̄j =

{
λjδj

Pc({λi},{βi},{Pj}) j ∈ B,

0 otherwise.
(2.13)

where Pc({λi}, {βi}, {Pj}) is the coverage probability under closed access given

by Lemma 2 and

δj =

∫
R2

e
−
(
βj
Pj

)2/α

C(α)||x||2
∑K
m=1 λmP

2/α
m

e
−
βjσ

2

Pj
||x||α

dx.

The corresponding result for the interference-limited networks is

N̄j =

 λjP
2/α
j β

−2/α
j∑

i∈B λiP
2/α
i β

−2/α
i

j ∈ B,

0 otherwise.
(2.14)
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2.5 Average Rate

In this section, we derive the average rate R̄ achievable by a random mo-

bile user when it is in coverage both for the open and closed access strategies.

It is worth noting that since the rate is computed conditioned on the mobile

being in coverage, it is not the same as the classic ergodic rate E[R]. The

motivation behind considering this metric is that given the coverage/outage

information, the service providers are interested in knowing the average rate

they can provide to the users that are in coverage. Please refer to Appendix A

for the ergodic rate expression.

2.5.1 Open Access

The main result for the average rate in open access is given in Theorem

2. In this section, for notational simplicity, we restrict our attention to the

case of σ2 = 0. However, the results can be extended to the general case with

noise in a straightforward manner.

Theorem 2. The average rate achievable by a randomly chosen mobile in open

access when it is in coverage is

R̄ = log (1 + βmin) +

∑K
i=1 λiP

2/α
i A(α, βi, βmin)∑K

i=1 λiP
2/α
i β

−2/α
i

, (2.15)

where

A(α, βi, βmin) =

∫ ∞
βmin

max(βi, x)−2/α

1 + x
dx,

and βmin = min{β1, β2, . . . , βK}.
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Proof. Denoting the coverage event
⋃K
i=1

⋃
x∈Φi

(SIR(x) > βi) by C({βi}), the

average rate achievable by a randomly chosen mobile user when it is under

coverage can be expressed as:

R̄ = E
[
log

(
1 + max

x∈
⋃

Φi
(SIR(x))

) ∣∣∣C({βi})
]
. (2.16)

We first derive the conditional complementary cumulative density function

(CCDF) of maxx∈⋃Φi(SIR(x)) as follows:

P
(

max
x∈
⋃

Φi
(SIR(x)) > T

∣∣∣ C({βi})
)

(a)
=

P
(
maxx∈⋃Φi(SIR(x)) > T,C({βi})

)
P(C({βi}))

(b)
=

P (C({T}),C({βi}))
P(C({βi}))

,

=
P (C({max(T, βi)}))

P(C({βi}))
,

(c)
=

{ ∑K
i=1 λiP

2/α
i max(βi,T )−2/α∑K

i=1 λiP
2/α
i β

−2/α
i

; T > βmin

1 ; otherwise
, (2.17)

where (a) follows from Bayes’ theorem, (b) follows from Lemma 1 under

the assumption βi > 1 ∀ i, (c) follows from Theorem 1, and βmin denotes

min{β1, β2, . . . , βK}.

Denoting random variable maxx∈⋃Φi(SIR(x)) by X, R̄ can be evaluated

as follows:

R̄ =

∫ ∞
0

log(1 + x)fX(x | C({βi}))dx,

=

∫ ∞
x=0

∫ x

y=0

1

1 + y
fX(x | C({βi})) dy dx,

51



(a)
=

∫ ∞
y=0

(∫ ∞
x=y

fX(x | C({βi})) dx

)
1

1 + y
dy,

=

∫ ∞
0

P (X > y | C({βi}))
1 + y

dy, (2.18)

where (a) follows from changing the order of integration. Now we substitute

(2.17) in (2.18) to get the average rate as:

R̄ =

∫ βmin

0

1

1 + y
dy +

1∑K
i=1 λiP

2/α
i β

−2/α
i

K∑
i=1

λiP
2/α
i

∫ ∞
βmin

max(βi, x)−2/α

1 + x
dx

= log(1 + βmin) +
1∑K

i=1 λiP
2/α
i β

−2/α
i

K∑
i=1

λiP
2/α
i

∫ ∞
βmin

max(βi, x)−2/α

1 + x
dx.

(2.19)

This completes the proof.

Thus we observe that the average rate expression involves only a single

integral which can be easily evaluated numerically.

Corollary 4. Using the same threshold β for all tiers, the average rate achiev-

able by a randomly chosen mobile that is in coverage in open access is:

R̄ = log(1 + β) + β2/αA(α, β, β). (2.20)

The above result shows that the average rate is independent of the

density of BSs of each tier when the SIR thresholds are same for all the tiers.

This is expected because the distribution of max SIR does not depend upon

the density of BSs in this case (follows from Theorem 1).
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2.5.2 Closed Access

The average rate R̄c achievable by a randomly chosen mobile under

closed access (assuming it is under coverage) can be expressed as:

E

[
log

(
1 + max

x∈
⋃
i∈B Φi

(SIR(x))

) ∣∣∣⋃
i∈B

⋃
x∈Φi

(SIR(x) > βi)

]
. (2.21)

Following the same steps as in proof of Theorem 2, we arrive at the following

Proposition.

Proposition 3. Assuming a mobile user is allowed to connect to only a subset

B of the K tiers, the average rate (assuming mobile is under coverage) can be

expressed as:

R̄c = log (1 + βmin) +

∑
i∈B λiP

2/α
i A(α, βi, βmin)∑

i∈B λiP
2/α
i β

−2/α
i

, (2.22)

where βmin = min
i∈B
{βi}.

Corollary 5. Assuming the threshold of each tier is the same and equal to

β, the average rate achievable by a randomly chosen mobile in coverage under

closed access is

R̄c = log(1 + β) + β2/αA(α, β, β). (2.23)

From Corollaries 4 and 5, we observe that the average rate (R̄) of

the mobile while it is in coverage is not affected by access control when the

thresholds are the same for all tiers. However, since the coverage probability

is lower in case of closed access, it would naturally lead to a lower ergodic rate

as compared to the open access networks. Interested readers can refer to [48]

for the derivation of ergodic rate in this framework.

53



2.6 Numerical Results
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Figure 2.5: Coverage probability in a two-tier HetNet with and without ther-
mal noise (K = 2, P1 = 25P2, λ2 = 5λ1, β2 = 1 dB, SNRedge = 0 dB).

Most of the analytical results presented in this chapter are fairly self-

explanatory and do not require a separate numerical interpretation. Therefore,

to avoid repetition, we will present only non-obvious trends and validation of

the model in this section.

2.6.1 Effect of Thermal Noise

We first study the effect of thermal noise on the coverage probability by

considering a typical two-tier network consisting of macro-cells overlaid with

pico-cells. To set the noise power, we use the following notion of cell-edge

users in this example. Defining the distance of the the nearest macro BS to
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Figure 2.6: Coverage probability in a two-tier HetNet (K = 2, α = 3, P1 =
100P2, λ2 = 2λ1, β2 = 1 dB, No noise).

the typical mobile user to be r and the underlying random variable to be R,

the mobile user is said to be on the cell edge if P(R ≤ r) ≥ Pedge, where Pedge

is set to 0.9 for this illustration. For PPP(λ), P(R ≤ r) = 1 − exp(λπr2),

giving r ≥
√
− ln(1−Pedge)

πλ
. For a desired edge-user SNR, say SNRedge, σ

2 can be

approximated as σ2 ≈ Ptr
−α
edge

SNRedge
, where redge is the limiting value of r evaluated

above. Under this setup, we present the coverage probability for various values

of α in Figure 2.5. By comparing these results with the no-noise case, we note

that the typical HetNets are interference limited and hence thermal noise has

a very limited effect on coverage probability. Therefore, we will ignore noise

in the rest of this section.
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Figure 2.7: Coverage probability in a two-tier HetNet (K = 2, α = 3.2,
P1 = 1000P2, λ2 = 4λ1, β2 = 1 dB, No noise).

2.6.2 Validity of PPP Model and β > 1 Assumption

While a random PPP model is probably the best that can be hoped

for in modeling “unplanned” tiers, such as femtocells, its accuracy in model-

ing “planned” BS locations, such as those of macro-cells, is open to question.

Therefore we verify the PPP assumption for macro-cells from a coverage proba-

bility perspective by considering a two-tier network in three different scenarios:

1) the macro-cell BSs are distributed according to PPP (our model), 2) the

macro-cell BSs correspond to an actual 4G deployment, and 3) macro-cell BSs

are distributed according to hexagonal grid model. The second tier is modeled

as an independent PPP in all three cases. As shown in Figures 2.6 and 2.7,

the actual coverage probability lies between the coverage probabilities of the
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PPP and grid model. This is because the likelihood of a dominant interferer

is highest for the PPP and lowest for the grid model. This comparison shows

that the PPP assumption is nearly as accurate as the grid model in the case of

macro-cells, with the PPP providing a lower bound and grid model providing

an upper bound to the actual coverage probability.

We now focus on the β > 1 assumption by comparing the theoretical

and simulated results for coverage probability in Figures 2.6 and 2.7. As

expected, the simulated and analytical results match reasonably well for βi > 1

but interestingly, the theoretical results also provide a tight upper bound to the

exact solution even until about β1 = −4 dB (≈ .4). Therefore, the analytical

results also cover typical cell edge users. The same trend is observed in the

case of average rate results presented in Figure 2.8, which are also accurate

down to about −4 dB target SIR. Recall that the assumption βi > 1 is relaxed

in Appendix A, where general expressions for coverage probability and ergodic

rate are derived.

2.7 Summary

In this chapter, we developed a tractable model for a downlink HetNet

consisting of K tiers of randomly located BSs, where each tier may differ in

terms of average transmit power, supported data rate and BS density. Assum-

ing a mobile user connects to the strongest candidate BS in terms of received

power and a fairly general channel model, we derived an expression for the

probability of coverage (equivalently outage) over the entire network under
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Figure 2.8: Average rate while mobile is in coverage (K = 2, α = 3, P1 =
1000P2, λ2 = 2λ1, β1 = β2 = β, no noise, open access).

both open and closed access, which assumes a strikingly simple closed-form

when the resulting SINR is greater than 1 and the network is interference lim-

ited. We also derived simple expressions for the average rate achieved by a

typical mobile and the average load on each tier of BSs. One interesting ob-

servation for interference-limited open access networks is that at a given SINR,

adding more tiers and/or BSs neither increases nor decreases the coverage

probability when all the tiers have the same target SINR. The baseline model

developed in this chapter will be generalized to various scenarios of interest

for current and future HetNets in the following chapters.

58



Chapter 3

Load-Aware Modeling and Analysis of

HetNets

As discussed in the previous chapter, HetNets are characterized by cells

whose coverage areas may vary by orders of magnitude. It is natural therefore

that their user populations (and hence traffic loads) will vary similarly. Yet, to

date, random spatial models developed for HetNets generally assume that all

base stations (BSs) are always transmitting and hence implicitly have the same

load. This chapter incorporates a flexible notion of BS load by conditionally

thinning the interference field, conditional on the connection of a typical mobile

to its serving BS. We derive the coverage probability – i.e. the SIR distribution

– for a typical mobile in a K-tier HetNet where each tier has an arbitrary load,

characterized by an activity factor pk ∈ [0, 1], where pk = 1 is fully loaded.

3.1 Related Work and Motivation

The idea of using random spatial models for K-tier HetNets discussed

in the Chapter 2 was introduced by us in [5, 77] and extended in [48–56],

and is surprisingly tractable: under fairly benign assumptions, the coverage

probability could be derived in closed-form, which is not possible even for 1-
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tier networks in the hexagonal grid model. The model further was shown to

generally agree in several important ways with more sophisticated industry

(e.g. 3GPP) simulations [33] and even early field deployments of HetNets [32].

Despite this encouraging progress, the baseline model and all its exten-

sions lack in at least one important aspect, which is their neglect of network

traffic and load. Rather, the work to date in this direction has assumed that

all the BSs transmit concurrently all the time, which translates to a fully

loaded (or full buffer) scenario resulting in pessimistic estimates of coverage

and average rate. Although this might be justified for macrocells in peak traf-

fic hours, this is not applicable for smaller cells whose smaller coverage areas

will naturally accommodate fewer users, even if considerable biasing towards

the small cells is introduced. Therefore, the main goal of this chapter is to

incorporate a notion of BS load. Those familiar with random spatial models

will recognize that a simple independent thinning of the point processes will

not capture the load since it may also turn off the serving BS, which is not

allowed if the analysis is performed for a typical active user. On the other

hand, incorporating more sophisticated queueing models in the present multi

cell scenario will render the analysis intractable due to the interference in-

duced coupling in the service rates of various BSs [78,79]. Moreover, this line

of thought is not in the scope of the current chapter since we do not focus

on the flow level performance evaluation. The readers interested in flow level

models can refer to [80, 81]. With our main focus on the downlink coverage

evaluation, we propose a middle way whereby we conditionally thin the inter-
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ference field predicated on a connection to a typical active user, and we are

able to maintain acceptable tractability with a realistic model of BS loading.

3.2 Contributions and Outcomes

Tractable load model for K-tier HetNets. In Section 3.3, we in-

corporate a notion of BS load in the baseline K-tier HetNet model proposed in

Chapter 2. For a HetNet where BSs across tiers differ in terms of their transmit

power, supported data rate and deployment density, we assume that a typical

mobile connects to the strongest BS in terms of received power and condi-

tioned on this connection, the ith tier interfering BSs transmit independently

with a probability pi, which models the load. These BS activity factors {pi}

may vary significantly across the tiers due to orders of magnitude differences

in the coverage areas of each tier.

Coverage probability for both open and closed access net-

works. We derive exact expressions for the coverage probability of a typical

mobile user in both open and closed access HetNets. Since these expressions

involve an infinite summation, we also derive a set of upper and lower bounds

that can be made arbitrarily tight with a finite number of terms. These bounds

also give insights into the number of terms of the infinite summation required

to approximate the coverage probability such that the approximation error is

within some predefined limit.

Key system design insights. This chapter provides some potentially

useful design insights for HetNets. First, we study the effect of proposed
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“conditional thinning” on the coverage footprints of various tiers and show that

this effect can be understood in two equivalent ways: i) thinning of interference,

and ii) biasing of the typical mobile towards its serving BS. While the former is

a direct result of thinning, the latter is an indirect consequence of the expansion

of the coverage regions in the thinned interference field.

Second, our analysis sheds light into the effect of adding new tiers to

already existing HetNets. In particular, we derive an exact condition under

which the addition of a new tier to a general K-tier HetNet will increase the

overall coverage probability. A relevant special case is the addition of small

cells to existing macrocell networks, where we show that in the interference

limited regime the overall open access coverage probability increases if the load

on small cells is smaller than that of macrocells, which is a typical operating

scenario because of the smaller loads handled by small cells. This is a strong

rebuttal to the viewpoint that unplanned infrastructure might bring down a

cellular network due to increased interference.

Third, we show that the coverage probability for a general K-tier

interference-limited open-access network is invariant to changes in the power

and deployment density when all the classes of BSs have same loads and target

SINRs. Furthermore, this coverage probability is also the same as that of a

single tier network with the same target SINR and the same BS activity factor.
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3.3 System Model

As in Chapter 2, we model a downlink heterogeneous cellular network

with K classes (or tiers) of BSs. For notational simplicity, we denote the

set {1, 2, . . . K} by K. BSs of the ith class transmit with power Pi, have

a target SINR of βi and are assumed to form a realization of an independent

homogeneous Poisson Point Process (PPP) Φi with density λi. As discussed in

Chapter 2, such a model seems sensible for user deployed BSs such as femtocells

but is dubious for the centrally planned tiers such as macrocells. Nevertheless,

the difference is not as large as expected and PPP assumption for macrocells is

shown to be about as accurate as the grid model when compared to an actual

4G network in [1]. More recently, [82] has validated the PPP assumption for

certain cities using tools from spatial statistics. We will comment more on the

accuracy of this assumption in the context of the proposed load model in the

Numerical Results Section.

Without loss of generality, we perform analysis on a typical mobile user

located at origin, which is made possible by Slivnyak’s Theorem [69]. For cell

association, we consider the max-SINR connectivity model, where a mobile

user connects to the BS that provides highest downlink SINR. It should be

noted that this model is the same as the max-power connectivity model where

a mobile connects to the BS that provides highest downlink power. Since

HetNets are typically interference-limited [83], we ignore thermal noise for

notational simplicity. However, as would be evident from the analysis, this

assumption can be relaxed without much extra work. To model the wireless
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channel, we consider a standard distance based path loss with exponent α > 2

along with Rayleigh fading. Hence the received power at a typical mobile

from a BS located at point x ∈ Φi can be expressed as Pihx‖x‖−α, where hx ∼

exp(1) and ‖x‖−α is the distance based path loss. General fading distributions,

e.g., log-normal shadowing, can be incorporated using techniques developed

in Chapter 5. Assuming Zk to be the set of kth tier interfering BSs (possibly

thinned version of Φk), the downlink SIR at the typical mobile user when it

connects to the BS located at point y ∈ Φi is

SIR(y) =
Pihy‖y‖−α∑K

k=1

∑
x∈Zk Pkhx‖x‖

−α
. (3.1)

3.3.1 Modeling Base-Station Load

In thisK-tier random spatial model, we now incorporate network “load”

perceived by each BS as the likelihood of its transmission at a randomly chosen

time instant. This can also be visualized as the BS activity factor, formally

defined as the fraction of time for which a BS transmits.

Relationship of BS activity factor with number of active users.

A BS is inactive in a particular resource block, e.g., time-frequency resource

block in LTE [75], if there is no active user scheduled. This can be due to an

over provisioned system or a momentary lull in traffic due to the bursty nature

of data access. Clearly, this model characterizes the load on each BS in terms

of the total number of active users served by that BS at a random time instant.

In the context of Orthogonal Frequency Division Multiple Access (OFDMA)
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if a particular BS experiences high load, it will utilize more frequency time

resources and hence the probability that a user is scheduled in a particular

frequency time block increases. Therefore, the load perceived by a BS is

directly related to the likelihood that an arbitrary resource block is utilized

and hence is related to the BS activity in that particular block.

Temporal and spatial correlation in BS activity factors. In gen-

eral, there is both temporal and spatial correlation in the activity factors of

different BSs. Temporal correlation is induced across neighboring BSs by the

mobility of users, i.e., if a user is associated to a particular BS, the likelihood of

neighboring BSs transmitting at a future time instant is slightly higher. Spa-

tial correlation is induced by interference and traffic/load patterns [78,79]. To

understand this, consider two neighboring BSs. When the first BS transmits,

it increases net interference experienced by the second BS and hence reduces

its data rate. As a result, the second BS now takes longer to transmit same

amount of data than it would have taken if the first BS was not transmit-

ting. Therefore, the activity factors of these two BSs are positively correlated.

However, modeling the exact nature of these correlations is beyond the scope

of the current chapter and we assume the BS activity factors to be indepen-

dent. Although the spatio-temporal correlations haven’t yet been modeled for

this exact problem, it is worth noting that they have been handled in some

related setups, e.g., the effect of spatio-temporal correlations of interference

on coverage is discussed in [84,85].
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3.3.2 Proposed Load Model and Mathematical Preliminaries

We assume that a typical mobile connects to the strongest BS in terms

of received power and conditioned on this connection, the interferer belonging

to the ith tier transmits independently with a probability pi and is idle with a

probability 1 − pi. This conditioning makes it harder to analyze this system

model since we do not have a priori knowledge about the serving BS and hence

it is not possible to isolate the interference field. To overcome this, we partition

each tier Φm independently into two sets of BSs Ψm and ∆m, where Ψm and

∆m are both independent PPPs with densities pmλm and (1 − pm)λm. The

set Ψm represents the set of active BSs of tier m with the possibility of one of

them being a serving BS, and ∆m represents the set of idle BSs of tier m with

an exception that it could also contain the serving BS since partitioning was

done independently. The advantage of this partitioning is that the interferers

are confined to the set Ψ =
⋃
m∈K Ψm. For ease of notation, we define the

maximum signal strength from a set of nodes A as

M(A) = sup
x∈A

PAhx‖x‖−α, (3.2)

and the total received power at the origin from the set of active BSs as

I =
K∑
i=1

∑
x∈Ψi

Pihx‖x‖−α, (3.3)

which denotes the net interference power if Ψ does not include the serving BS

and the interference plus signal power if it includes the serving BS. From the

definition of M(Ψi) and I, it is easy to see that 1
(

M(Ψi)
I−M(Ψ)

< βi

)
= 1 only if no
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active BS in the set Ψi can connect to the mobile. Similarly, 1
(
M(∆i)
I

< βi

)
=

1 only if no BS in the set ∆i is able to connect to the mobile. The second

event is defined to cover the possibility that a serving BS may lie in the set

∆i. Using these two events, we will now define the coverage probability of a

typical mobile at the origin. We note that a mobile will be in outage (not in

coverage) if none of the BSs in the whole network provides SIR that is greater

than the corresponding target for that tier.

Definition 1 (Coverage Probability). Coverage probability, Pc, can be formally

defined as

Pc = 1− E

[∏
i∈K

1

(
M(Ψi)

I −M(Ψ)
< βi

)
1

(
M(∆i)

I
< βi

)]
. (3.4)

For this definition, we implicitly assumed an open access network where a

mobile user is allowed to connect to any BS in the network without any re-

strictions. Another possible access strategy is closed access or closed subscriber

group strategy in which a mobile is allowed to connect to only a subset B ⊆ K

of all the tiers. Coverage probability for closed access is also given by (3.4)

with the only difference that the product is over the set B instead of K.

For tractability, we assume that the target SIR thresholds βi are greater

than 0 dB, i.e., βi > 1, ∀ i. This is in fact the case for a large fraction of mobile

users and only a few edge users might violate this assumption. Moreover, in the

Numerical Results Section we show that the results derived under this weaker

assumption hold down until around −2dB which covers a large fraction of cell

edge users as well. This assumption has also been validated earlier for the
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fully loaded K-tier HetNet in [5]. The reason why this assumption is helpful is

because it ensures that at most one BS in the active set Ψ meets the target SIR

requirements for a typical mobile user. Refer to [5] for a detailed discussion

on this assumption and its application in coverage analysis of a fully loaded

K-tier HetNet.

3.3.3 Coverage Regions

Before going into the detailed analysis of coverage probability, it will

be useful to understand the effect of the proposed load model on the cover-

age footprints of various BSs. Consider a realization of a three tier HetNet

in Figure 3.1. We first plot the coverage regions assuming a fully loaded net-

work by tessellating the space according to max-SIR connectivity model in the

left figure. As discussed in Chapter 2, this plot does not resemble a classi-

cal Voronoi tessellation due to the differences in the transmit powers of BSs

across tiers. Moreover, it should be noted that the “cell edges” are not as

sharp in reality due to fading and shadowing, which are averaged out for these

illustrative plots. The effect of incorporating the proposed load model on cov-

erage footprints can now be understood in two equivalent ways: i) thinning of

the interference field conditional on the connection of a typical mobile to its

serving BS, where the original coverage regions corresponding to the inactive

BSs are removed to highlight conditional thinning (second figure), ii) biasing

of a typical mobile towards its serving BS relative to the new cell edge defined

by the set of active BSs (third figure). While the former is a direct result of
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Figure 3.1: Illustration of the proposed load model in a realization of a three-
tier network with λ2 = 2λ1, λ3 = 4λ1, P1 = 100P2, P1 = 1000P3, p1 = .6
and p2 = p3 = .4. The big circles, squares, small diamonds and big triangle,
respectively represent macrocells, picocells, femtocells and a typical mobile.
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conditional thinning, the latter is an indirect consequence of the expansion of

coverage regions in the thinned interference field. In Apendix B, we show that

the same idea of conditional thinning can also be used to study non-uniform

user distributions, especially the ones corresponding to the current capacity

centric deployments, where the users are more likely to lie closer to the BSs.

3.4 Coverage Probability

This is the main technical section of this chapter where we derive the

probability that a typical mobile is in coverage under the system model in-

troduced in the last section. We first derive coverage probability for an open

access network, from which the results for closed-access immediately follow.

3.4.1 Exact Expression for Coverage Probability

We start by stating the Laplace transform of I, i.e., LI(s) = E [exp(−sI)],

in Lemma 3, which will be useful in the derivation of coverage probability. The

proof follows from the proof of Theorem 1 in Chapter 2 with some minor mod-

ifications and is hence skipped.

Lemma 3. The Laplace transform of I can be expressed as

LI(s) = exp

(
−s

2
αC(α)

K∑
l=1

plλlP
2
α
l

)
, (3.5)

where C(α) is given by

C(α) =
2π2 csc

(
2π
α

)
α

. (3.6)
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The following Lemma deals with fractional moments of interference and

is the main technical result required to evaluate the coverage probability for

this model.

Lemma 4. Let Ψi denote the set of active transmitters of tier i and δi =

βi/(1 + βi). Let I denote the total received power from the BSs in the set Ψ

and for notational simplicity define T = 1

(
max
i∈K

M(Ψi)
δi

< I

)
I−2/α. Then

E [Tm] =
m!g(m)

(−A)m
,

where

g(m) =

(
−A
η

)m{
1

Γ(1 + 2m
α

)
− B

η

πΓ(1 + 2
α

)

Γ(1 + (m+1)2
α

)

}
, (3.7)

and

A = πΓ

(
1 +

2

α

)∑
l∈K

(1− pl)λlP
2
α
l β
− 2
α

l , (3.8)

B =
∑
i∈K

λipiP
2
α
i β
− 2
α

i 2F1(1, 2m
α
, 1 + (m+1)2

α
, 1

1+βi
)

(1 + βi)
2m
α

, (3.9)

η = C(α)
K∑
l=1

plλlP
2
α
l . (3.10)

The hypergeometric function is denoted by

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt. (3.11)

Proof. Being consistent with the definition of T, we note that

Tm = 1

(
max
i∈K

M(Ψi)

δi
< I

)
I−2m/α. (3.12)
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To proceed with the proof, we represent I−2m/α in terms of Γ(x) as

I−2m/α =
1

Γ(2m/α)

∫ ∞
0

e−sIs−1+ 2m
α ds, m ≥ 1, (3.13)

where Γ(x) is the standard gamma function. Using this representation of

I−2m/α we can express E[Tm] as

E

[
1

(
max
i∈K

M(Ψi)

δi
< I

)
1

Γ
(

2m
α

) ∫ ∞
0

e−sIs−1+ 2m
α ds

]
. (3.14)

Using Fubini’s theorem, we can exchange the expectation and the inner integral

to obtain

1

Γ
(

2m
α

) ∫ ∞
0

s−1+ 2m
α E

[
e−sI1

(
max
i∈K

M(Ψi)

δi
< I

)]
ds. (3.15)

Under the assumption βi > 1, ∀ i, we know that only one BS in the whole

network can establish a downlink connection with a typical mobile. Hence,

1

(
max
i∈K

M(Ψi)

δi
> I

)
=

K∑
i=1

∑
x∈Ψi

1 (SIR(x) > βi) , (3.16)

where SIR(x) is the received SIR when a typical mobile is camped to the BS

located at x ∈ Ψi. Using this expression, the expectation term of (3.15) can

be written as

E
[
e−sI1

(
max
i

M(Ψi)

δi
< I

)]
= E

[
e−sI

]
−

K∑
i=1

E

[
e−sI

∑
x∈Ψi

1(SIR(x) > βi)

]
. (3.17)

From Lemma 3, we know the Laplace transform of total interference and hence

the first term in the above expression can be directly written as:

E
[
e−sI

]
= exp

(
−s2/αC(α)

K∑
l=1

plλlP
2/α
l

)
. (3.18)
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To evaluate the expectation in the second term of (3.17), we first denote

the effective interference as I ′ = I − Pihx‖x‖−α and note that the Laplace

transforms of I and I ′ are the same. The expectation can now be simplified

as

E

[
e−sI

∑
x∈Ψi

1(SIR(x) > βi)

]

= E

[∑
x∈Ψi

exp(−sI ′ + Pihx‖x‖−α)1

(
Pihx‖x‖−α

I ′
> βi

)]
(3.19)

(a)
= E

[∑
x∈Ψi

e−sI
′Ehx

[
e−Pihx‖x‖

−α
1
(
hx > βiI

′P−1
i ‖x‖α

)]]
(3.20)

(b)
= E

[∑
x∈Ψi

EI′
[
exp(−I ′(s(1 + βi) + βiP

−1
i ‖x‖α))

]
1 + sPi‖x‖−α

]
, (3.21)

where (a) follows from the fact that fading is independent of all the other

random variables and (b) follows from the fact that hx ∼ exp(1). Now, using

the Laplace transform of I ′ and recalling η = C(α)
∑K

l=1 λlplP
2/α
l , it can be

further simplified to

E

[∑
x∈Ψi

exp(−η(s(1 + βi) + βiP
−1
i ‖x‖α)

2
α )

1 + sPi‖x‖−α

]
, (3.22)

and using Campbell Mecke theorem [69] to

λipi

∫
R2

exp(−η(s(1 + βi) + βiP
−1
i ‖x‖α)

2
α )

1 + sPi‖x‖−α
dx. (3.23)

With this we have now simplified both the terms of (3.17) given respectively

by (3.18) and (3.23). We now substitute the first term in (3.15) and evaluate

the integral with respect to s as∫ ∞
0

s−1+2m/α exp
(
−ηs2/α

)
ds =

η−mα(m− 1)!

2
, (3.24)
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where the solution follows from the substitution s2/α → y followed by integra-

tion by parts. Now substituting the second term (given by (3.23)) in (3.15),

we get the following integral

λipi

∫ ∞
0

∫
R2

s−1+2m/αe−η(s(1+βi)+βiP
−1
i ‖x‖

α)
2
α

1 + sPi‖x‖−α
dxds. (3.25)

Now use the substitution (sPi)
−1/αx→ x, which leads to

λipi

∫ ∞
0

∫
R2

s−1+2m/αe−ηs
2
α ((1+βi)+βi‖x‖α)

2
α

1 + ‖x‖−α
(sPi)

2
αdxds. (3.26)

Now exchange the integrals to obtain

λipiP
2
α
i

∫
R2

∫ ∞
0

s−1+
2(m+1)

α e−ηs
2
α ((1+βi)+βi‖x‖α)

2
α

1 + ‖x‖−α
dsdx. (3.27)

Now the inner integral (with respect to s) can be evaluated directly using the

definition of Γ(x) function or using the substitution s2/α → s to obtain the

below integral.

λipiP
2
α
i αm!

2ηm−1

∫
R2

dx

(1 + ‖x‖−α)(1 + βi + βi‖x‖α)
2
α

(m+1)
. (3.28)

Now the above integral can be expressed as

1

(1 + βi)
2
α

(m+1)

∫
R2

dx

(1 + ‖x‖−α)(1 + βi
1+βi
‖x‖α)

2
α

(m+1)
(3.29)

Now using the substitution 1 + βi
1+βi
‖x‖α → t−1, the above expression can be

simplified to

2πβ
−2/α
i

α(1 + βi)2m/α

Γ(2m/α)Γ(1 + 2/α)

Γ(1 + (m+ 1)2/α)
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2F1(1, 2m/α, 1 + (m+ 1)2/α, (1 + βi)
−1), (3.30)

where 2F1 is the generalized hypergeometric function. Combining all the above

we obtain the result.

Using these Lemmas, we now derive the main coverage probability re-

sult.

Theorem 3 (Open Access). The downlink coverage probability for a typical

mobile user in a K-tier open access network assuming βi > 1, ∀ i, is

Pc =
π

C(α)

∑
i∈K

piλiP
2/α
i β

−2/α
i∑K

i=1 piλiP
2/α
i

−
∞∑
m=1

g(m), (3.31)

Proof. The coverage probability is given by (3.4). Since the point processes ∆i

and the corresponding fading random variables are independent, conditioning

on the common interference, we can move the expectation inside the product.

Hence

1− Pc = E

[
K∏
i=1

1

(
M(Ψi)

I −M(Ψ)
< βi

)
E [1 (M(∆i) < βiI)]

]
, (3.32)

where the inner expectation is with respect to the inactive transmitter sets.

We first simplify this inner expectation as follows:

E [1 (M(∆i) < βiI)]

= E

[∏
x∈∆i

1
(
Pih‖x‖−α < βiI

)]
(3.33)

(a)
= E

[∏
x∈∆i

(
1− exp

(
−βiP−1

i I‖x‖α
))]

(3.34)
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(b)
= exp

(
−(1− pi)λi

∫
x∈R2

exp
(
−βiP−1

i I‖x‖α
)

dx

)
(3.35)

(c)
= exp

(
−(1− pi)λiβ

− 2
α

i I−
2
αP

2
α
i πΓ

(
1 +

2

α

))
, (3.36)

where (a) follows form the fact that fading is Rayleigh distributed, i.e., h ∼

exp(1), (b) follows from the probability generating functional (PGFL) of PPP [69]

and (c) follows from some algebraic manipulations to reduce the integral to a

Gamma function. Now recalling the expression of A given by (3.8), we can

write

1− Pc = E
[
1

(
max
i∈K

M(Ψi)

δi
< I

)
exp(−AI−2/α)

]
. (3.37)

Using the Taylor series expansion of exp(−x), exchanging the infinite summa-

tion and expectation1,

1− Pc =
∞∑
m=0

(−A)m

m!
E
[
1

(
max
i∈K

M(Ψi)

δi
< I

)
I−2m/α

]
.

The summation can be split as

1− Pc = P
(

max
i∈K

M(Ψi)

δi
< I

)
+
∞∑
m=1

(−A)m

m!
E [Tm] . (3.38)

The term 1− P
(

maxi
M(Ψi)
δi

< I
)

is the coverage probability in a fully loaded

heterogeneous network where the m-th tier density is pmλm. This is derived

in [5] and is given by

1− P
(

max
i

M(Ψi)

δi
< I

)
=

π

C(α)

K∑
i=1

piλiP
2/α
i β

−2/α
i∑K

i=1 piλiP
2/α
i

. (3.39)

Using Lemma 4 to evaluate E [Tm], we obtain the result.

1The average of the series is absolutely convergent.
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We note that the expression of coverage probability involves infinite

summation over the sequence g(m). Therefore, we first show that the infinite

summation converges by showing that |g(m)| → 0 as m→∞. Observe that

|g(m)| ≤
(
A

η

)m
1

Γ(1 + 2m
α

)
≤ (A/η)m

b1 + 2m
α
c!

=
(A/η)m

d2m
α
e!

=

[
(A/η)

m

d 2m
α e
]d 2m

α
e

d2m
α
e!

→ 0, (3.40)

where the limiting argument follows from the fact that the sequence of the

form xn/n! → 0. In addition to proving that the series converges, this upper

bound on |g(m)| also sheds light on the behavior of the sequence g(m). If

A/η < 1, the bound decreases monotonically with m and hence it is enough

to consider only a few significant terms to closely approximate the infinite

sum. However, if A/η > 1, especially if A/η � 1, the upper bound first

increases until d2m
α
e ≤ (A/η)

m

d 2m
α e and decreases thereafter. Therefore, the

number of significant terms of g(m) required to approximate the infinite sum

would be higher. It can be easily shown that A/η < 1 for all choices of system

parameters when the activity factor of each tier satisfies the following condition

pl >
1

1 + C(α)β
2/α
l [πΓ(1 + 2/α)]−1

. (3.41)

For βl = 1 and α = 4, this value of pl comes out to be ≈ 0.36. Therefore, the

infinite sum can be tightly approximated by the first few significant terms of

g(m) in most operating scenarios. We will comment more on the convergence

of g(m) and the number of terms required to tightly approximate the coverage

probability later in this section and in the Numerical Results Section. We now
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provide the exact expression for the coverage probability in a closed access

network in the following Theorem. We recall that that coverage probability in

closed-access is given by (3.4) with the only change that the product is over B

instead of K. By definition, coverage probability in closed access is less than

that of open access. Using this definition, the proof proceeds exactly same as

that of Theorem 3, and hence is not provided.

Theorem 4 (Closed Access). The downlink coverage probability of a typical

mobile in a K-tier closed access network where a mobile is allowed to connect

to B ⊆ K tiers assuming βi > 1, ∀ i, is

Pc =
π

C(α)

∑
i∈B

piλiP
2/α
i β

−2/α
i∑K

i=1 piλiP
2/α
i

−
∞∑
m=1

gc(m), (3.42)

where gc(m) and the corresponding expression for A are given by (3.7) and

(3.8), respectively, with the only difference that the summations defined over

set K are now over set B.

We conclude this discussion with a note that the proof technique in-

troduced in this section is quite general and can be used to study variants

of the load model introduced in the last section. For example, if the net-

work is modeled such that it has a predefined set of BSs that are active and

a typical mobile is allowed to connect only to the inactive set, it is easy to

observe that the coverage probability under open access assumption is given

by Pc = 1 − E
[∏K

i=1 1
(
M(∆i)
I

< βi

)]
. From the proof of Theorem 3, this

corresponds to 1−E[exp(−AI−2/α)] and can easily be evaluated following the
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proof technique of Theorem 3. The same argument can be extended to the

closed access case as well.

3.4.2 Special Cases of Interest

We now use the results derived in this section to study some special

cases and compare the system performance with already known results for

fully loaded system. First, we note that for a fully loaded system, the value of

A = 0 and hence g(m) = gc(m) = 0, ∀ m. Therefore, the coverage probability

in this case can be expressed as the following Corollary of Theorems 3 and 4.

Corollary 6 (Fully Loaded). For a fully loaded system, i.e., pi = 1 ∀ i, the

coverage probability in open access is given by

Pc =
π

C(α)

∑
i∈K

λiP
2/α
i β

−2/α
i∑K

i=1 λiP
2/α
i

, (3.43)

which is the same as Corollary 1 of Chapter 2. The coverage probability in

closed access is also given by (3.43) with the only difference that the summation

over the set K is now over set B.

For a single tier open access network, the coverage probability derived

in Theorem 3 can be simplified and is expressed as the following Corollary.

Corollary 7 (Single Tier). The coverage probability for the single tier open

access network with BS activity factor p is

Pc =
πβ−2/α

C(α)
−
∞∑
m=1

g(m), (3.44)
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where the terms A
η

and B
η

appearing in the expression of g(m) given by (3.7),

A

η
=
πΓ(1 + 2

α
)(1− p)

C(α)pβ
2
α

(3.45)

B

η
=

2F1(1, 2m
α
, 1 + (m+1)2

α
, 1

1+β
)

C(α)β
2
α (1 + β)

2m
α

. (3.46)

Remark 1 (Scale invariance of a single tier network). From Corollary 7, we

note that for any BS activity factor p, the coverage probability in a single tier

open access network is independent of the BS density λ and transmit power

P . This is henceforth referred to as “scale-invariance” of cellular networks to

changes in the BS density and their transmit powers.

Remark 1 is a generalization of a similar result derived for fully loaded

networks in Chapter 2, which can easily be seen from Corollary 6. In addition

to single tier networks, it was also observed in Chapter 2 that the general

fully loaded open access multi tier networks also exhibit scale invariance if the

target SIRs for all the tiers are the same. This can also be easily deduced from

Corollary 6. Motivated by this observation, we study the coverage probability

for our proposed load model in open-access multi tier networks under the

assumption that the target SIR is the same for all tiers in the next Corollary.

Corollary 8 (Coverage Probability: K-Tier with same β). The coverage prob-

ability for a K-tier open access network under the proposed load model assum-

ing target SIRs to be the same (= β) for all the tiers is given by (3.44), with

the difference that the term A
η

appearing in the expression of g(m) given by
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(3.7) is

A

η
=
πΓ(1 + 2

α
)

C(α)β2/α

∑K
l=1(1− pl)λlP 2/α

l∑K
l=1 plλlP

2/α
l

, (3.47)

and B
η

appearing in (3.7) is given by (3.46).

Remark 2 (Scale invariance of K-tier HetNets with same β). From Corol-

lary 8, we note that the coverage probability for K-tier HetNets is not scale

invariant in general, even when target SIRs of all the tiers are the same. How-

ever, the invariance property does hold when the BS activity factors of all the

tiers are the same. Interestingly, the coverage probability in this case is same

as that of a single tier network given by Corollary 7.

To understand this remark, we consider the following simple example.

Example 1 (Scale invariance in a 2-tier HetNet). Consider a two tier network

with BS activity factors p1 and p2. If p1 < p2, increasing the density of the first

tier leads to a higher increase in the intended power due to the higher likelihood

of having a closer tier-1 BS as the serving BS but a relatively smaller increase

in the interference power. The coverage probability in this case is expected to

increase. On the other hand, if p1 > p2, increasing the density of tier-1 BSs

leads to higher increase in the interference power as compared to the intended

power, leading to a decrease in the coverage probability. The two effects cancel

each other when the activity factors of the two tiers are the same.

We now extend this result and derive exact condition under which the

addition of (K + 1)th tier won’t affect (or will improve) the coverage of the
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existing K-tier network. We again assume same target SIR for all the tiers.

The result is given in the following Corollary.

Corollary 9 (Same β: Effect of adding (K + 1)th tier). The overall coverage

probability increases with the addition of the (K + 1)th tier if the load on the

new tier satisfies

pK+1 <
K∑
l=1

pl
λlP

2/α
l∑K

i=1 λiP
2/α
i

, (3.48)

decreases if the inequality is reversed and remains the same if (3.48) holds

with equality.

Proof. From Corollary 8 we note that the only term in the coverage probability

expression that will change with the addition of a new tier is A/η. It can be

expressed as

A

η
=
πΓ(1 + 2

α
)

C(α)β2/α

[ K∑
l=1

pl
λlP

2/α
l∑K

i=1 λiP
2/α
i

]−1

− 1

 . (3.49)

Defining effective load on a K-tier network as

p
(K)
eff =

K∑
l=1

pl
λlP

2/α
l∑K

i=1 λiP
2/α
i

, (3.50)

A/η can be expressed as

A

η
=
πΓ(1 + 2

α
)

C(α)β2/α

(
1− p(K)

eff

p
(K)
eff

)
, (3.51)

which is the same as (3.45) for the single tier coverage result derived in Corol-

lary 7. From this equivalence, it follows that the coverage probability is a

82



decreasing function of peff . Therefore, if the addition of the new tier leads to

lower effective load on the network, the coverage will increase. This can be

shown to be the case when (3.48) holds as follows:

p
(K+1)
eff =

K+1∑
l=1

pl
λlP

2/α
l∑K+1

i=1 λiP
2/α
i

(3.52)

≤
∑K

l=1 plλlP
2
α
l∑K+1

i=1 λiP
2
α
i

+
λK+1P

2
α
K+1∑K+1

i=1 λiP
2
α
i

∑K
l=1 plλlP

2
α
l∑K

i=1 λiP
2
α
i

(3.53)

= p
(K)
eff . (3.54)

The other two results follow using the same argument.

3.4.3 Bounds on the Coverage Probability

Evaluation of the exact expression of the coverage probability requires

an infinite summation. Although we have argued that the summation can be

tightly approximated by considering only a first few terms, we haven’t yet pro-

vided a formal method to determine the exact number of terms required such

that the approximation error is within predefined limit, say ε. Interestingly,

this can be achieved as a by-product of the set of bounds we derive in this

section that can be made arbitrarily tight. The idea is to use the following

identity of exp(−x).

Lemma 5. For x ≥ 0 and m > 0,

2m−1∑
i=0

(−x)i

i!
≤ exp(−x) ≤

2m∑
i=0

(−x)i

i!
. (3.55)
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Proof. The proof follows from induction. Since exp(−0) = 1 and
∑2m−1

i=0
(−0)i

i!
=

1, it suffices to prove that d
dx

∑2m−1
i=0

(−x)i

i!
− exp(−x) < 0, which follows from

the upper bound when m = m− 1.

Using this identity in the proof of Theorem 3 results in the following

bounds.

Lemma 6 (Bounds on Coverage Probability). For m > 0, the coverage prob-

ability for the proposed load model can be bounded as

−
2m∑
i=1

g(i) ≤ Pc −
π

C(α)

K∑
i=1

piλiP
2/α
i β

−2/α
i∑K

i=1 piλiP
2/α
i

≤ −
2m−1∑
i=1

g(i) (3.56)

Clearly, these bounds can be made arbitrarily tight by increasing the

value of m. Interestingly, these bounds are closely related to the exact expres-

sion of coverage probability derived in Theorem 3. In particular, the upper

and lower bounds are derived by truncating the infinite sum over g(m) at odd

and even number of terms, respectively. Therefore, these bounds provide a

direct way to find the number of terms of g(m) required to ensure an ap-

proximation error within a predefined limit ε, which is equal to Mε, where

Mε = min
m
|g(m)| < ε. We will use this observation in the study of the conver-

gence of infinite sum over g(m) in the Numerical Results Section.

We conclude this section by noting that some terms of the sequence

g(m) can be expressed in closed form, leading to closed form bounds for the

special case when α = 4 and m = 2. The bounds in this case depend only on
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the first two terms of g(m) that can be expressed as

g(1) =
−A
η

{
2√
π
− 4
√
π

η

K∑
i=1

λipiP
1/2
i β

−1/2
i

1 +
√

1 + βi

}
(3.57)

g(2) =

(
A

η

)2

{
1− 2π

η

K∑
i=1

λipiP
1
2
i (β

− 1
2

i − csc−1(
√

1 + βi))

}
. (3.58)

3.5 Numerical Results

Since most of the analytical results derived in this chapter are fairly self-

explanatory and do not require separate numerical treatment, we will provide

only those results which help in validating key modeling assumptions or help

better visualize certain important trends.

3.5.1 Convergence of Infinite Sum

We study the convergence of the infinite sum appearing in the coverage

probability expression in Figures 3.2 and 3.3. Figure 3.2 plots the truncated

series
∑m

i=1 g(i) as the function of m for a single tier network and hence gives

insights about the number of terms required until the series converges. To

understand the trends, recall that the ratio A/η decreases monotonically with

the activity factor p. Therefore, the number of terms required for the series

to converge are higher when the BS activity factor is lower. Moreover, for the

case when A/η > 1, i.e., p = .25, the series first increases until a certain point

and then decreases and finally converges to its limiting value. This trend has
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Figure 3.2: Plot showing the convergence of the series
∑

i g(i) for various BS
activity factors in a single tier network with β = 1.
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Figure 3.4: Coverage probability as a function of transmission probability is a
single tier network (β = 1 and α = 3.8).

been discussed in detail earlier in the chapter when we proved the convergence

of the infinite sum. To provide an idea of the number of terms required such

that the approximation is within ε of the exact value, we plot the number of

terms Mε for various scenarios in Figure 3.3. We again note that the number

of terms required are reasonably small unless the transmission probability of

some tier is extremely small.

3.5.2 System Model Validation

Comparison with the fully loaded system. After gaining insights

into the behavior of the coverage probability expression, we now use it to

highlight the importance of the proposed model by comparing the coverage
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results of a single tier network with those of a fully loaded system in Figure 3.4.

Although a huge difference in the coverage guarantees was expected for very

low BS activity factors, it is indeed interesting that the coverage estimates

assuming full load are quite pessimistic even for reasonably high load scenarios,

such as p = .7− .8.

Comparison with an actual 4G deployment. After highlighting

the importance of the proposed load model, we now validate the PPP model

in the context of the proposed load model. While this model seems sensible

for the small cells, especially the ones driven by unplanned user deployments,

such as femtocells, it is dubious for the centrally planned tiers such as macro-

cells. Therefore, with a special focus on the macrocells, we consider three

location models for a two tier HetNet: i) macrocell locations modeled as a

realization of a PPP, ii) macrocell locations modeled as a hexagonal grid, iii)

macrocell locations drawn from an actual 4G deployment over 40 × 40 Km2

area [1,5]. The second tier is modeled as a PPP in all three cases. Recall that

the same dataset of actual 4G deployment was also used for the model valida-

tion in Chapter 2. The numerically evaluated coverage probability results for

all these models along with the analytical results of the proposed load model

and the fully-loaded PPP model are presented in Figure 3.5. We first note

that the proposed PPP model is about as accurate as the grid model when

compared to the actual 4G deployment, with the grid model providing an

upper bound and the PPP model providing a lower bound to the actual cov-

erage probability. This is consistent with the conclusions of [1] and Chapter 2,
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Figure 3.5: Comparison of Pc in PPP and grid models with the actual BS
locations of macrocells. The second tier is modeled as PPP in all three cases
(K = 2, λ2 = 2λ1, P = [1, 0.01], L = 40 × 40 Km2, α = 3.8, p = [0.8, 0.6],
β1 = β2 = β).

which focus on fully-loaded cellular models in single tier and multi tier cellu-

lar networks, respectively. Second, we note that the analytical results derived

for the proposed load model are accurate down to about −2dB even though

they were derived under the assumption that the target SIR is greater than

0dB for all the tiers. Since this covers most of the cell edge users as well, the

proposed analytical results are reasonably accurate in the operational regime

of the current cellular networks. Third, we note that the fully-loaded model

provides a very loose lower bound to the actual coverage probability, thereby

highlighting again the importance of the proposed load model.
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Comparison with a detailed simulation. The following two as-

sumptions were made to facilitate analysis: i) the activity factors are the same

for all the BSs of a particular tier, and ii) the activity of each BS is indepen-

dent of the other BSs. We now validate these assumptions by comparing the

analytical results with a detailed system simulation. For this comparison, we

consider a simulation setup consisting of a two tier HetNet, with the BSs of

each tier modeled by independent PPPs. The user locations are also modeled

by an independent PPP with density λu. As in the proposed model, each

user is associated with the BS that provides the best received signal strength.

From this, we calculate the actual load being served by each BS in terms of

the number of users, which we denote by Nxi for a BS located at xi. Assuming

the number of orthogonal resource blocks, e.g., time-frequency resource blocks

in LTE [75], to be M , the activity factor of a BS in each resource block can

be expressed as pxi = Nxi/M as discussed in Section 3.3. To keep the setup

simple, we consider the regime where the probability of having Nxi > M for

any BS is small and whenever it happens, the activity factor for that BS is

assumed to be 1. For this setup, the coverage probability results are presented

in Figure 3.6.

For a meaningful comparison of this simulation result with the analyt-

ical results, we first need to find analytical expressions of the activity factors

pi as a function of the user density λu. For this, we leverage Corollary 2 of

Chapter 2, where it is shown that the fraction of users served by jth tier is
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Figure 3.6: Comparison of the derived theoretical results with detailed system
simulation accounting for actual load factors resulting from actual coverage
regions (K = 2, P = [1, 0.1], β1 = β2 = 0dB, λ1 = λ2, MRB = 20, α = 3.8).

given by

N̄j =
λj (Pj/βj)

2
α∑K

i=1 λi (Pi/βi)
2
α

. (3.59)

Using this result, the average number of users served by a jth tier BS (average

load) is λu
λj
N̄j. Therefore, assuming M resource blocks, the activity factor in

a randomly chosen resource block is

pj =
1

M

λuN̄j

λj
=
λu
M

(Pj/βj)
2
α∑K

i=1 λi (Pi/βi)
2
α

. (3.60)

We use this analytical result for the the load factors in the coverage probability

results derived in the chapter to plot the analytical results as a function of the

user density in Figure 3.6. Comparing this result with the numerical result
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Figure 3.7: Coverage probability in a two tier network as a function of λ2

(β = [1, 1], P = [1, .01], λ1 = 1, p1 = .6 and α = 3.8).

obtained form a detailed simulation, we note that the two are reasonably close,

especially relative to the previously known results for the fully-loaded system.

This validates the two assumptions mentioned in the starting of this discussion.

3.5.3 Scale Invariance and Effect of Adding Small Cells

We now consider a two tier system and plot the coverage probability

as a function of the density of second tier for various BS activity factors in

Figure 3.7. The target SIR is fixed to be the same for both the tiers. We

first note that the network is invariant to the changes in density when p1 = p2

as discussed in the last section. More importantly, we note that the coverage

probability increases with λ2 when the second tier BSs are less active than the
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(c)
2 =

10λ1, p1 = 1 and α = 3.8). The density of second tier BSs in open access

λ
(o)
2 = f

1−f λ
(c)
2 , where f is the fraction of BSs in open access.

first tier. This is an important result from the perspective of small cells, which

are generally less active than macrocell BSs. Therefore, the coverage proba-

bility of the network should increase with the addition of small cells in this

regime. This is a strong rebuttal to the viewpoint that unplanned infrastruc-

ture might bring down a cellular network due to increased interference. On the

other hand, if a tier of BSs is added which is more active than the macrocells,

the coverage would decrease, although this case seems pretty unlikely given

the high load handled by the macrocells.
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3.5.4 Open vs Closed Access

So far in this section we have only studied open access networks, where

a mobile user can access any BS in the network. We now study the effect of

closed access on the coverage probability, with a focus on a particular scenario

of interest where a certain fraction of BSs of a particular tier are in closed access

while the others are in open access. This scenario is especially important in the

current HetNets, where the access permissions of a particular small cell might

be different for different set of users. It is easy to argue that this scenario can

be visualized as a special case of the general model developed in this chapter.

To understand this, assume that a fraction f of BSs of a certain tier are in

open access – we assume that a BS is in open or closed access independent of

the other BSs. Therefore, the density of BSs in open access λ
(o)
i and closed

access λ
(c)
i can be evaluated from the following two equations

f =
λ

(o)
i

λ
(o)
i + λ

(c)
i

(3.61)

λi = λ
(o)
i + λ

(c)
i . (3.62)

Now this tier can be divided into two tiers, one with density λ
(o)
i , which is in

open access, and other with density λ
(c)
i , which is in closed access – both form

independent PPPs.

To study this scenario in detail, we consider a two tier HetNet, where

the first tier is in open access and fraction 1 − f of BSs of the second tier is

in closed access. For this scenario, the coverage probability as a function of

f is presented in Figure 3.8 for various load scenarios. The results confirm
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the intuition that the gap in open and closed access results reduces when the

value of f is increased. More interestingly, the gap is smaller when the second

tier BSs are lightly loaded. This implies that the effect of interference due

to closed access small cells on coverage probability is negligible if there are

enough small cells in open access.

3.6 Summary

In this chapter, we have incorporated a flexible notion of BS load in

the baseline HetNet model developed in the previous chapter by introducing

a new idea of conditionally thinning the interference field, conditional on the

connection of a typical mobile to its serving BS. We have shown that this

conditional thinning is a natural way of modeling different levels of load on

different types of BSs arising mainly from the differences in their coverage

footprints. We observe that the fully loaded models are extremely pessimistic

in terms of coverage, and the analysis shows that adding lightly loaded access

points (e.g. pico or femtocells) to the macrocell network always increases

coverage probability. In Apendix B, we show that the same idea of conditional

thinning can also be used to study non-uniform user distributions, e.g., in the

current capacity centric deployments, where the users are more likely to lie

closer to the BSs.
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Chapter 4

Downlink MIMO HetNets: Modeling,

Ordering Results and Performance Analysis

As discussed in Chapter 1, handling current data deluge requires much

higher data rates than contemporary cellular networks were designed for. Two

strategies that stand out to provide such spectral efficiencies are: i) deploy low

power nodes to reduce frequency reuse distance, and ii) equip base stations

(BSs) with multiple antennas to enable the use of multiple antenna techniques,

such as beamforming and SDMA. Multiple antenna techniques are already

relatively mature, being part of multiple wireless standards such as IEEE

802.11e WiMAX and 3GPP LTE-A [12], apart from plethora of theoretical

research activities in academia [13]. Similarly, the concept of deploying low

power nodes (HetNet), discussed in Chapters 2 and 3, has been researched both

in industry and academia for a fairly long time, see for example [36, 86] and

the references therein. The standardization activities for HetNets have also

started in 3GPP release 10 [14]. These activities clearly indicate that multi-

antenna techniques and HetNets will coexist and complement each other in

the future wireless networks and should not be studied in isolation, as has

been typically done in the literature, including all the extensions of Chapter 2

and 3, see [87] for a survey. In this chapter, we address this problem and
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develop a general tractable model and the corresponding analytical tools for

multi-antenna HetNets using techniques from stochastic orders and stochastic

geometry.

4.1 Related Work and Motivation

As discussed in Chapter 2, a more natural approach to model HetNets

is by using random spatial models, where the locations of the BSs are assumed

to form a realization of a two-dimensional point process, the simplest being

the Poisson Point Process (PPP) [1, 5]. This model has the advantages of be-

ing scalable to multiple classes of overlaid BSs and accurate to model location

randomness, especially that of the small cells. As demonstrated in Chap-

ters 2 and 3, powerful tools from stochastic geometry can be used to derive

performance results for general multi-tier networks in closed form, which was

not even possible for single-tier networks using deterministic grid model [5].

While sufficient progress has been made in modeling single-antenna (SISO)

HetNets [5, 49, 51, 56], the efforts to understand multi-antenna HetNets have

just begun, e.g., see [88].

The main challenge in modeling multi-antenna HetNets is the num-

ber of possible multi-antenna techniques to choose from in each tier along

with their tractable characterization. As a result, most prior works on multi-

antenna HetNets have focused only on two-tier networks. For this chapter, the

most relevant one is [89], where SU-BF was shown to achieve better coverage

than multiuser linear beamforming on the downlink of femtocell-aided cellular
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network assuming perfect channel state information (CSI). Random orthogo-

nal beamforming with max-rate scheduling and coordinated beamforming for

femtocell underlay networks was analyzed in [90], [91], respectively. The effect

of channel uncertainty on linear beamforming in two-tier networks was inves-

tigated in [92]. In addition to the contributions in cellular networks, there has

been extensive work on analyzing multi-antenna techniques in wireless ad hoc

networks, which is also related to our work since several tools and techniques

developed therein can be employed and extended to HetNets. Several single-

user MIMO techniques, such as spatial diversity, open loop transmission and

spatial multiplexing, have been studied, see for instance [93–95]. The per-

formance of multiuser MIMO communication in a Poisson field of interferers,

with perfect and quantized CSI at the transmitter was investigated in [96] and

[97], respectively.

4.2 Contributions and Outcomes

Downlink model for multi-antenna HetNets. In Section 4.3, we

develop a comprehensive downlink model consisting ofK tiers or classes of BSs,

such as macrocells, femtocells, picocells and distributed antennas. The BSs

across tiers differ in terms of transmit power, deployment density, target SIR,

number of transmit antennas, number of users served in each resource block,

and the type of multi-antenna transmission. We also consider the possibility

of closed subscriber group or closed access in which a typical user is granted

access to only a few BSs, while the rest purely act as interferers.
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Ordering results for coverage and rate. For general system mod-

els, such as the one considered in this chapter, it is not always possible to

express key performance metrics such as coverage probability and per user

rate in closed form. In the absence of simple analytical expressions, it is diffi-

cult to compare different transmission techniques in general HetNet settings.

To facilitate this comparison, in Section 4.4 we derive ordering results for both

the coverage probability and the rate per user in both open and closed access

networks, using tools from stochastic orders. Interested readers can refer to

[98–101] for applications of stochastic orders to conventional wireless networks.

While circumventing the need for deriving coverage and rate expressions, this

analysis leads to several system design guidelines, e.g., it concretely demon-

strates the superiority of serving a single user in each resource block, either by

SISO or SU-BF, as opposed to serving multiple users by SDMA, both in terms

of coverage and rate, under a per user power constraint. The BS locations

for this analysis may be drawn from any general stationary point process, not

necessarily independent across tiers, which is a significant generalization of the

baseline HetNet model presented in Chapter 2.

Area spectral efficiency comparison. While comparison of differ-

ent configurations of multi-antenna HetNets in terms of coverage probability

and average rate per user is conclusive from the ordering results, it does not

directly capture the fact that some transmission techniques serve more users

than the others and hence provide higher sum data rate. In order to cap-

ture this effect, in Section 4.5 we additionally consider ASE, which gives the

99



number of bits transmitted per unit area per unit time per unit bandwidth.

To facilitate the comparison of transmission techniques in terms of ASE, we

first derive an upper bound on the coverage probability of a typical user in

both open and closed access networks assuming that the BS locations for each

tier are drawn from independent PPPs and show that it can be reduced to a

closed form expression for the “full” SDMA case (where the number of users

served is equal to the number of antennas). The tightness of the bound is

studied and it is shown that the closed form bound derived for full SDMA is

tight down to very low target SIRs. Using this expression and the SISO Het-

Net coverage probability results derived in Chapter 2, we derive ASE results

for various transmission techniques in closed form. Main consequences of this

analysis are: i) for the same density of BSs, SISO HetNets have lower ASE

than SDMA since they serve fewer users. Interestingly, despite serving fewer

users, SU-BF outperforms SDMA in moderate and high target SIR regime,

and ii) when the BS densities are adjusted such that all the transmission tech-

niques serve the same density of users, the ASEs of SU-BF, SISO and SDMA

follow the same ordering as that of coverage probability and average rate per

user.

4.3 System Model

4.3.1 System Setup and BS Location Model

We consider K different classes or tiers of BSs, indexed by the set

K = {1, 2, . . . , K}. The BSs across tiers differ in terms of their transmit

100



Table 4.1: Notation Summary

Notation Description
Φk A point process modeling the locations of kth tier BSs
Φu An independent PPP modeling user locations

Pk;λk Downlink transmit power to each user; deployment density of
the kth tier BSs

Mk,Ψk Number of transmit antennas; number of users served in each
resource block by a kth tier BS

hkx Channel power of the direct link from a kth tier BS located at
x to a typical user, hkx ∼ Γ(∆k, 1) with ∆k = Mk −Ψk + 1

gjy Channel power of the interfering link from a jth tier BS
located at y to a typical user, gjy ∼ Γ(Ψy, 1)

K; {xk} {1, 2, . . . , K}; {xk1 , xk1+1, . . . xk2}, where the values of k1 and
k2 will be clear from the context

B B ⊂ K denotes the set of open access tiers
Pc; βk Coverage probability (in terms of SIR); target SIR for kth tier

Rc;Ok, Tk Rate coverage; fraction of resources allocated to each user
served by kth tier; kth tier target rate

η Area spectral efficiency
Zk,m Zk,m = X1/X2, where X1 ∼ Γ(k, 1) and X2 ∼ Γ(m, 1)
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power Pk with which they transmit to each user, deployment density λk, target

SIR βk, number of antennas Mk and number of users served by each BS in a

given resource block Ψk ≤ Mk, ∀k ∈ K. While in open access networks a

mobile user can connect to any BS, in closed access networks the access is

restricted to B ⊂ K tiers. For the ordering part (Section 4.4), the locations

of BSs of each tier are drawn from a general stationary point process Φk. The

point processes Φk are not necessarily independent. Please note that this is a

significant generalization of the baseline HetNet model proposed in Chapter 2,

which assumed each tier to be sampled from an independent PPP. This is

enabled by the fact that the ordering results are based on the ordering of the

fading components of the channel power distributions for various setups and

do not depend upon the spatial point process governing the locations of the

BSs. However, we do require further assumptions for the ASE comparison,

which involves the derivation of explicit expressions for coverage probabilities.

Therefore, for the ASE analysis we will consider the more familiar independent

PPP model, which was the focus of Chapters 2 and 3, where each tier of BSs

is modeled by an independent homogeneous PPP of density λk.

Nevertheless, this is a fairly general model that captures the current

deployment trends in 4G networks, e.g., it is easy to imagine hundreds of

femtocells coexisting in each macrocell, transmitting at orders of magnitude

lower power than macrocells, having relatively small number of antennas due

to smaller form factor, serving smaller number of users due to smaller coverage

footprints and providing restricted access to their own users due to a smaller
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backhaul capacity or privacy concerns. A two-tier illustration of the proposed

system model is shown in Figure 4.1, where a high power macro tier with

four transmit antennas per BS coexists with a low power pico tier with two

antennas per BS. Owing to its bigger coverage footprint, each macro BS serves

higher load than its pico counterpart as discussed in Chapter 3. The coverage

region of each BS in this illustration corresponds to the region where it provides

the maximum average received power, thereby leading to a weighted Voronoi

tessellation as discussed in detail in Chapter 2.

We model the user locations by an independent PPP Φu and focus

on the downlink analysis performed at a single-antenna user located at the

origin. This analysis at the origin is facilitated by Slivnyak’s theorem, which

states that the properties observed at a typical point of Φu are the same as

those observed by the point at origin in the point process Φu ∪ {0} [69]. For

the interference, we consider full-buffer model where the interfering BSs are

assumed to be always transmitting [1,5]. More sophisticated load models [102]

along with non-uniform user distributions [103] can also be considered, e.g.,

using ideas from Chapter 3, but are out of the scope of this chapter.

4.3.2 Channel Model

Before going into the technical details, it is important to understand

that the channel power distribution of the link from a multi-antenna BS to

a typical single-antenna user depends upon the transmission technique and

whether it is a serving BS or an interferer. For example, if it is a serving BS,
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Figure 4.1: An illustration of a possible two-tier multi antenna HetNet con-
figuration, with four antenna macro BSs serving two users and two antenna
pico BSs serving one user each. The circles, triangles and rectangles represent
macro BSs, pico BSs, and mobile users, respectively.

it may precode its signals for a typical user depending upon the transmission

technique, which may lead to a different channel distribution from the case

when it simply acts as an interferer. Therefore, to develop a general framework

in which the BSs across tiers may differ in terms of the number of transmit

antennas and the transmission technique, we assume that the channel power

for the direct link from a kth tier BS located at xk ∈ R2 to a typical user

located at origin is denoted by hkxk and for the interfering link from a jth tier

BS located at y ∈ R2 is denoted by gjy. In this chapter, we assume perfect

CSI and focus on zero-forcing precoding, under which for Rayleigh fading it

can be argued that the channel power distributions of both the direct and the

interfering links follow the Gamma distribution [104]. As discussed in detail in
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Appendix C.1, it can therefore be shown that for zero forcing hkx ∼ Γ(∆k, 1)

and gjy ∼ Γ(Ψj, 1), where ∆k = Mk−Ψk+1. Note that for SISO transmission

there is no precoding and hence the channel gains hkx and gkx from a BS to

a typical user are the same. Under Rayleigh fading assumption, both follow

exp(1) distribution, which is the same as Γ(1, 1) distribution.

Although for brevity we limit our discussion to Rayleigh fading chan-

nels, other fading distributions under which the channel power for both the

desired and the interfering links follow Gamma distribution after precoding,

e.g., Nakagami-m, can also be studied using the proposed techniques. The

shape and the scale parameters for the Gamma distributions corresponding to

the channel powers of the desired and interfering links can be derived using

techniques well known in the literature, e.g., see [105]. For concreteness, we

will focus on the following three transmission techniques in this chapter:

• SDMA: In this case, a kth tier BS with Mk antennas serves Ψk > 1 users

in each resource block. When Ψk = Mk, we term it as full SDMA, for which

∆k = 1.

• SU-BF: In this case, a kth tier BS serves Ψk = 1 users in each resource

block.

• SISO: Baseline single-antenna case [5], where each BS serves one user in

each resource block.

For each transmission technique, the received power at a typical single-
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antenna user located at origin from the BS located at xk ∈ Φk is

Pr = Pkhkxk‖xk‖−α, (4.1)

where α is the path loss exponent, because we assume a per user power con-

straint in this formulation. The received SIR can now be expressed as

SIR(xk) =
Pkhkxk‖xk‖−α∑

j∈K
∑

y∈Φj\xk Pjgjy‖y‖
−α . (4.2)

For notational simplicity, we assume that the thermal noise is negligible as

compared to the self interference and is hence ignored. This is justified in the

current wireless networks, which are typically interference limited [83]. As will

be evident from our analysis, thermal noise can be included in the proposed

framework with little extra work. For cell association, we assume that the set

of candidate serving BSs is the collection of the BSs that provide the strongest

instantaneous received power from each tier to which a typical mobile is allowed

to connect. A typical user is said to be in coverage if the received SIR from

one of these candidate serving BSs is more than the respective target SIR, as

discussed in detail in the next section. We conclude this section with a note

that although we consider perfect CSI, it is possible to relax this assumption to

study the effect of imperfect CSI on the performance of multi-antenna HetNets,

as discussed below.

Remark 3 (Imperfect CSI). Using tools from [97, 106, 107], it is possible to

derive the received channel power and interference statistics for both SU-BF

and SDMA under quantized channel directional information (CDI). In particu-

lar, in a system where each user reports CDI using B feedback bits, the desired
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channel gain is exponentially distributed for both SU-BF and SDMA. How-

ever, in the latter case, the inter-user interference is not completely eliminated

due to zero-forcing beamforming using imperfect CSI. Therefore, an additional

interference term, independent of the multi-tier interference, appears in the

denominator of (4.2), which is distributed as Γ(Ψk, δ) with δ = 2
− B
Mk−1 under

quantization cell approximation [97].

4.4 Ordering Results for Coverage and Rate

This is the first main technical section of this chapter, where we com-

pare the performance of various transmission techniques in terms of coverage

probability and rate per user. We first study coverage probability in detail

and then show that the analysis can be easily extended to study rate per user.

We begin by formally defining the coverage probability.

Definition 2 (Coverage probability). A typical user in an open access network

is said to be in coverage if its downlink SIR from at least one of the BSs is

higher than the corresponding target. This can be mathematically expressed as:

Pc = P

(⋃
k∈K

max
xk∈Φk

SIR(xk) > βk

)
. (4.3)

The coverage probability can be equivalently defined as the average area in cov-

erage or the average fraction of users in coverage. For closed access networks,

the definition remains the same, except that the union is now over the set of

tiers B ⊂ K to which a typical user is allowed to connect.
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Remark 4 (Open access vs. closed access coverage). The coverage probability

in open access networks is always higher than in closed access networks. It

follows directly by definition of coverage probability along with the fact that for

B ⊂ K

1

(⋃
k∈B

max
xk∈Φk

SIR(xk) > βk

)
≤ 1

(⋃
k∈K

max
xk∈Φk

SIR(xk) > βk

)
, (4.4)

where the indicator function 1(E) is 1 when event E holds and 0 otherwise.

Owing to the complexity of the system model considered in this chap-

ter, it is not always possible to express coverage probability in simple closed

form for any general system configuration, especially when the BS locations

are drawn from a general point process. As evident from our analysis in the

next section, this presents the first main challenge in comparing various trans-

mission techniques. In this section, we take a slightly different view of this

problem and focus on “ordering” the relative performance of different system

configurations using tools from stochastic orders. Interested readers can refer

to [108] for details on stochastic orders. It is important to note that stochastic

orders operate on random variables, as opposed to related majorization theory,

which defines partial order on deterministic vectors [109].

This powerful approach allows insights into the relative performance

of different transmission techniques, while circumventing the need to evaluate

complicated expressions for the performance metrics such as coverage and rate.

We begin by defining first order stochastic dominance as follows.
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Definition 3 (First order stochastic dominance). For any two random vari-

ables (rvs) Z1 and Z2, Z1 (first order) stochastically dominates Z2 if and only

if

P[Z1 > z] ≥ P[Z2 > z], ∀z. (4.5)

Equivalently, Z1 is greater than Z2 in the usual stochastic order and is denoted

by Z1 ≥st Z2.

Therefore, Z1 ≥st Z2 if and only if the complementary cumulative dis-

tribution function (CCDF) of Z1 dominates that of Z2 over the whole range.

It is intuitively clear and will be made precise later in this section that the

proper understanding of the ordering of received SIR for different system con-

figurations plays a central role in studying their coverage and rate ordering.

The main technical idea behind the proposed ordering approach is to condi-

tion on the distribution of the BS locations and then order the received SIRs

for different transmission techniques by ordering the fading components of the

channel powers of both the desired and the interfering links. This idea of order-

ing the channel power distributions has been previously used in the literature

to compare the performance of wireless links in terms of signal-to-noise-ratio

(SNR) and related metrics such as ergodic capacity and error rates for different

modulation schemes, e.g., see [98] and references therein. However, to the best

of our understanding, this approach has never been used for SIR ordering in

the context of HetNets. Now note that the received SIR can be alternatively
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expressed as

SIR(xk) =
Pk‖xk‖−α∑

j∈K
∑

y∈Φj\xk Pjgjy/hkxk‖y‖
−α , (4.6)

where the randomness due to propagation channel is lumped into ratios of

Gamma random variables hkxk and gjy. Therefore, it turns out that it is

important first to understand the ordering of the ratios of Gamma random

variables, which is studied next.

4.4.1 Ordering of the Ratios of Gamma Random Variables

For concreteness, define the ratio of two random variables X1 ∼ Γ(k, 1)

and X2 ∼ Γ(m, 1) by Zk,m = X1/X2. It is easy to derive the cumulative

distribution function (CDF) of Zk,m using basic algebraic manipulations and

is given by

FZk,m(z) = 1− 1

Γ(m)

k−1∑
i=0

Γ(m+ i)

Γ(1 + i)

zi

(z + 1)m+i
. (4.7)

Note that the ratios of Gamma random variables are known in much more

general settings, e.g., [110] studies the distribution of the ratio of the powers

of two possibly dependent random variables where both come from Gamma

family, but these generalizations are not required in this chapter. The form of

the distribution function (4.7) is such that for a given k1,m1 and k2,m2, it is

not easy to derive conditions on these variables under which the CCDF of one

ratio Zk,m dominates that of the other over the whole range of z. Therefore,

the above result is of little help in providing direct ordering of two random

variables Zk1,m1 and Zk2,m2 . We take an indirect route, which uses the following
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technical result about the equivalence in distribution of the Gamma random

variable and the sum of i.i.d. exponentially distributed random variables.

Given this technical result, the main result can then be proved using coupling

arguments. We first state the equivalence result, which is well-known and can

be easily verified using characteristic functions. We then remark on how to

use coupling arguments to establish stochastic dominance before stating the

main result.

Lemma 7. For i.i.d {Xi}, with Xi ∼ exp(1), the random variable X =∑k
i=1Xi is X ∼ Γ(k, 1).

Remark 5 (Using coupling to establish stochastic dominance). One way to

prove Z1 ≥st Z2 is to find two random variables Z∗1 and Z∗2 with the same

distributions as Z1 and Z2, respectively, such that it is always the case that

Z∗1 ≥ Z∗2 . This approach of using the same source of randomness to gener-

ate two random variables Z∗1 and Z∗2 satisfying the above relation and thereby

establishing the stochastic dominance result is termed as coupling [111].

We now prove the following result on the ordering of the ratios of the

Gamma random variables.

Lemma 8 (Ordering of the ratios of Gamma rvs). A random variable Zk1,m1

defined as the ratio of two Gamma random variables (first order) stochastically

dominates Zk2,m2 if k1 ≥ k2 and m1 ≤ m2.

Proof. Using the equivalence in distribution of the Gamma random variable
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and the sum of exponential random variables given by Lemma 7, we can gen-

erate a random variable Z∗k1,m1
with the same distribution as Zk1,m1 as follows

Z∗k1,m1
=

∑k1

i=1 Y1,i∑m1

j=1 Y2,j

, (4.8)

where {Ym,n} is the set of i.i.d. random variables such that Ym,n ∼ exp(1).

This equivalent representation will facilitate the use of standard coupling argu-

ments, under which the goal now is to generate another random variable Z∗k2,m2

with the same sources of randomness as that of Z∗k1,m1
, which has the same

distribution as Zk2,m2 , and show that Z∗k1,m1
≥ Z∗k2,m2

. Under the condition

k1 ≥ k2, this can be achieved by expressing Z∗k1,m1
as follows

Z∗k1,m1
=

∑k2

i=1 Y1,i +
∑k1

i=k2+1 Y1,i∑m1

j=1 Y2,i

(4.9)

≥
∑k2

i=1 Y1,i∑m1

j=1 Y2,i

(a)

≥
∑k2

i=1 Y1,i∑m2

j=1 Y2,i

(b)
= Z∗k2,m2

, (4.10)

where (a) follows from the condition m1 ≤ m2, and (b) from Lemma 7. This

completes the proof.

Remark 6. The set of conditions k1 ≥ k2 and m1 ≤ m2 is stronger than the

single condition k1/m1 ≥ k2/m2, which first comes to mind from the equiva-

lence of Gamma random variables and the sum of exponential random vari-

ables stated in Lemma 7. In fact it is easy to argue that the above stochas-

tic dominance is not always true if the only condition on the variables is

k1/m1 ≥ k2/m2. For instance, consider a case where k2 � k1 and m2 � m1

such that k1/m1 ≥ k2/m2. The distribution of Zk2,m2 is concentrated around
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Figure 4.2: The CCDFs of the ratios of Gamma random variables for different
shape parameters k and m.

its mean and cannot be dominated by the distribution of Zk1,m1 due to signif-

icant difference in their shapes. This is illustrated in Figure 4.2, where the

ratio of Gamma random variables with shape parameters k1 = 4 and m1 = 2

does not dominate the one with k2 = 100 and m2 = 100 due to concentration,

although k1/m1 ≥ k2/m2 holds.

To prove the main ordering results of this section, we need to extend the

stochastic dominance result of two random variables to multi-variate function

of random variables. The result is given in the following Lemma and follows

directly from the coupling arguments [111].

Lemma 9. If Xi ≥st Yi for all 1 ≤ i ≤ n, then

E[g(X1, X2, . . . , Xn)] ≥ E[g(Y1, Y2, . . . , Yn)], (4.11)
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for all multi-variate functions g that are non-decreasing in each component.

4.4.2 Coverage Probability Ordering

Using Lemma 9, we now derive the following general result on the

coverage probability ordering in K-tier open access multi-antenna HetNets.

As evident from the analysis and remarked later in this section, all the results

and insights carry over to closed access networks as well. Recall that the goal

of this analysis is to compare or “order” the performance of different systems

and not to obtain the exact expressions for the performance metrics in any

given system.

Theorem 5 (Coverage ordering in open access networks). The coverage prob-

ability of a K-tier open access HetNet with system parameters {∆k} and {Ψk}

is higher than or equal to the one with system parameters {∆′k} and {Ψ′k} if

∆k ≥ ∆′k and Ψk ≤ Ψ′k for k ∈ K.

Proof. By definition, the coverage probability for open access networks can be

expressed as

Pc = E1

⋃
k∈K

max
xk∈Φk

Pkhkxk‖xk‖−α∑
j∈K

∑
y∈Φj\xk

Pjgjy‖y‖−α
> βk

 (4.12)

= E1

⋃
k∈K

max
xk∈Φk

Pk‖xk‖−α∑
j∈K

∑
y∈Φj\xk

PjZjk‖y‖−α
> βk

 , (4.13)

where with slight abuse of notation (dropping the BS location from the sub-

script), Zjk = gjy/hkxk is defined as the ratio of two Gamma random vari-
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ables corresponding to the K-tier HetNet with system parameters {∆k} and

{Ψk}. Denote the corresponding ratio for the other system setup by Z ′jk. By

Lemma 8, Z ′jk ≥st Zjk if Ψ′j ≥ Ψk and ∆′j ≤ ∆k. Now it is easy to show that

the indicator function in (4.13)

g({Zjk}) = 1

⋃
k∈K

max
xk∈Φk

Pk‖xk‖−α∑
j∈K

∑
y∈Φj\xk

PjZjk‖y‖−α
> βk

 ,

is an element wise decreasing function of Zjk. Therefore, by Lemma 9 the

result follows.

Using this result, we can make some general comments about the cov-

erage probability in certain realistic deployments. We begin by studying the

effect of the number of users served in each tier on coverage probability.

Corollary 10 (Effect of number of users). For two different K-tier open access

HetNets, with the same number of antennas in each corresponding tier, the one

that serves less users in each tier than the other provides higher coverage due

to higher beamforming gain.

The proof of the above corollary directly follows from the fact that

under the same number of antennas for two setups, the one that serves less

users in each tier has ∆k ≥ ∆′k and Ψk ≤ Ψ′k for each tier, leading to higher

coverage. An important extension of the above corollary is the comparison

of the SDMA with SU-BF systems when the number of transmit antennas in

each corresponding tier are the same. The result is stated as the following

corollary.
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Corollary 11 (SDMA vs. SU-BF). For two K-tier HetNets, with the same

number of antennas in each corresponding tier, one performing SU-BF in each

tier and the other performing SDMA, the coverage probability in the SU-BF

case will always be higher.

Another consequence of this general ordering result is the comparison of

SISO with SU-BF and SDMA, with the SDMA case specialized to full SDMA.

Recall that in case of full SDMA, ∆k = 1 and Ψk = Mk for all the tiers. The

result is given in the following corollary.

Corollary 12 (SU-BF vs. SISO vs. full SDMA). For three K-tier HetNet

setups, one performing SU-BF in each tier, another doing SISO transmission

in each tier and the last one doing full SDMA in each tier, the coverage proba-

bility in case of SU-BF is higher than that of SISO, which in turn outperforms

full SDMA. The number of antennas in the corresponding tiers of SU-BF and

full SDMA HetNets need not be the same.

The proof follows from the fact that the shape parameters in case of

SU-BF are ∆k = Mk and Ψk = 1, where Mk > 1 is the number of antennas;

in case of SISO are ∆′k = Ψ′k = 1; and in case of full SDMA are ∆′′k = 1 and

Ψ′′k = Mk, where Mk > 1 is the number of transmit antennas.

For closed access networks, it can be shown that the coverage ordering

result derived in Theorem 5 holds under a slightly weaker condition because

a typical mobile is not allowed to connect to all the tiers. The result is given

as the following Corollary of Theorem 5 and the proof is skipped. Due to the
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similarity of this result with the open access case, the insights gained for the

open access networks above carry over to the closed access networks as well.

Corollary 13 (Coverage ordering in closed access). For two HetNets, with

B ⊂ K open access tiers, the one with system parameters {∆k} and {Ψk}

has a higher or equal coverage than the one with system parameters {∆′k} and

{Ψ′k} if ∆k ≥ ∆′k for k ∈ B and Ψk ≤ Ψ′k for k ∈ K.

4.4.3 Ordering Result for Rate per User

Another metric of interest for the performance evaluation of HetNets

is the rate achievable per user. In addition to the link quality (characterized

in terms of SIR), it also depends upon the effective resources allocated to

each user. For tractability, we make following two assumptions on resource

allocation: i) each kth tier BS serves same number of users, and ii) each BS al-

locates equal time-frequency resources to all its users. For SDMA, it should be

noted that several users will be scheduled on the same time-frequency resource

block. Interested readers can refer to [112] for more details on the motivation

and validation of these assumptions. Under these assumptions, we denote the

effective time-frequency resources, e.g., bandwidth, allocated to a user served

by a kth tier BS by Ok. The two assumptions on resource allocation ensure

that Ok is the same for all the users served by any kth tier BS. Therefore, the

downlink rate of a typical user served by a kth tier BS located at xk ∈ Φk can

be expressed as

R(xk) = Ok log2(1 + SIR(xk)). (4.14)
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Due to the difficulties in modeling exact load on each BS [5], which often

requires characterization of the service areas for different types of BSs, it is

challenging to characterize Ok and hence derive exact expressions for per user

rate distribution [112]. However, we now show that to compare different multi-

antenna transmission techniques, this characterization is not required and the

general ordering result derived above for the coverage probability can be easily

extended for the rate per user as well. Before going into the technical details, it

is important to note that the loading across tiers may differ significantly due to

the orders of magnitude differences in their coverage footprints. Therefore, the

effective resources Ok available in small cells for each user might be significantly

higher than the macrocells. In such a case, it might be beneficial for a user to

connect to a small cell even though it may not provide the best SIR over the

network. We will capture this characteristic of HetNets in our definition of

rate distribution below. Due to the interpretation of a minimum rate required

by each application, e.g., video, we will study rate distribution in terms of

“rate coverage”, which is defined below. It is just the CCDF of rate when the

target rates are the same for all the tiers.

Definition 4 (Rate coverage). A typical user in an open access network is

said to be in rate coverage if its effective downlink rate from at least one of

the BSs in the network is higher than the corresponding target. We denote the

target rate for a kth tier BS as Tk. Rate coverage can now be mathematically
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expressed as

Rc = P

(⋃
k∈K

max
x∈Φk

Ok log2(1 + SIR(xk)) > Tk

)
. (4.15)

For closed access, the expression remains the same except that the union is

now over the set B ⊂ K.

It is easy to show that the rate coverage for open access networks is

always higher than the closed access networks. This follows from the same

arguments that were used in case of coverage probability earlier in this sec-

tion. We now state the main ordering result for rate coverage in the following

Theorem.

Theorem 6 (Ordering result for rate coverage). For two K-tier HetNets with

the same resource allocation per user Ok for each corresponding tier, the one

with system parameters {∆k} and {Ψk} has equal or higher rate coverage than

the one with system parameters {∆′k} and {Ψ′k} if Ψk ≤ Ψ′k for all k ∈ K, and

∆k ≥ ∆′k for all k ∈ K in open access and all k ∈ B in closed access.

Proof. The rate coverage can be expressed as

Rc = E1

(⋃
k∈K

max
x∈Φk

Ok log2(1 + SIR(xk)) > Tk

)
, (4.16)

where SIR(xk) can be expressed as

SIR(xk) =
Pkhkxk‖xk‖−α∑

j∈K

∑
y∈Φj\xk

Pjgjy‖y‖−α
, (4.17)
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=
Pk‖xk‖−α∑

j∈K

∑
y∈Φj\xk

PjZjk‖y‖−α
, (4.18)

where as in the proof of Theorem 5, we define Zjk = gjy/hkxk as the ratio

of the two Gamma random variables. Now note that the indicator function

inside the expectation of (4.16) is an element wise decreasing function of Zjk,

from which the result follows on the same lines as the proof of Theorem 5.

Remark 7 (Same ordering for coverage and rate per user). From Theorems 5

and 6, we note that the ordering conditions for rate per user are the same as

that of coverage probability. Therefore, all the conclusions, including the order-

ing of SDMA, SU-BF and SISO transmission techniques, derived for coverage

probability carry over to the rate per user case as well.

Although it is clear from the above discussion that both SU-BF and

SISO outperform SDMA, both in terms of coverage probability and average

rate per user, it is important to note that we have not yet accounted for the

fact that SDMA serves more users than both SISO and SU-BF, and may result

in a higher sum-data rate. To address this, we compare the three transmission

techniques in terms of ASE in the next section.

4.5 Coverage Probability and ASE Performance

This is the second main technical section of the chapter where we derive

an upper bound on the coverage probability of a typical user in a K-tier Het-

Net, where the transmission techniques adopted by each tier are characterized
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in terms of the shape parameters ∆k and Ψk of the Gamma rvs. Recall that the

coverage probability is formally defined in Definition 2. For this analysis, we

assume that BS locations of each tier are drawn from an independent PPP Φk

with density λk. Although this model is not as general as the one considered

in the previous section, it is likely accurate for modeling the opportunistic

deployment of small cells and has been validated for planned tiers, such as

single-antenna macrocells by empirical observations [82] and theoretical argu-

ments under sufficient channel randomness [113]. In this chapter, we validate

it in the context of coverage probability in MIMO HetNets by comparing it

with an actual 4G deployment and the popular grid model in the numerical

results section.

4.5.1 Upper Bound on Coverage Probability

Before deriving the upper bound, we first derive an expression for the

Laplace transform of interference. The result is given in Lemma 10. This

generalizes the Laplace transform of interference derived for K-tier SISO Het-

Nets with Rayleigh fading, i.e., exponential channel powers, in Theorem 1 of

Chapter 2.

Lemma 10. The Laplace transform of interference LI(s) = E
[
e−sI

]
, where

I =
∑

j∈K
∑

y∈Φj
Pjgjy‖y‖−α is

LI(s) = exp

(
−s

2
α

∑
j∈K

λjP
2
α
j C(α,Ψj)

)
, (4.19)
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where

C(α,Ψj) =
2π

α

Ψj∑
m=1

(
Ψj

m

)
B

(
Ψj −m+

2

α
,m− 2

α

)
, (4.20)

and B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt is Euler’s Beta function.

Proof. The Laplace transform of interference LI(s) = EIxk
[
e−sI

]
can be de-

rived as follows:

EI
[
e−sI

]
= EI

[
e
−s
∑
j∈K

∑
y∈Φj

Pjgjy‖y‖−α
]

(4.21)

(a)
=
∏
j∈K

E

∏
y∈Φj

e−sPjgjy‖y‖
−α

 (4.22)

(b)
=
∏
j∈K

EΦj

∏
y∈Φj

Lgjy

(
sPj‖y‖−α

) (4.23)

(c)
=
∏
j∈K

exp

(
−λj

∫
R2

(
1− Lgjy

(
sPj‖y‖−α

))
dy

)
(4.24)

(d)
=
∏
j∈K

exp

(
−λj

∫
R2

(
1− 1

(1 + sPj‖y‖−α)Ψj

)
dy

)
(4.25)

=
∏
j∈K

exp

(
−λj

∫
R2

(1 + sPj‖y‖−α)Ψj − 1

(1 + sPj‖y‖−α)Ψj
dy

)
(4.26)

(e)
=
∏
j∈K

exp

(
−λj

∫
R2

∑Ψj
m=1

(
Ψj
m

)
(sPj‖y‖−α)m

(1 + sPj‖y‖−α)Ψj
dy

)
(4.27)

=
∏
j∈K

exp

−λj Ψj∑
m=1

(
Ψj

m

)∫
R2

(sxkPj‖y‖−α)m

(1 + sxkPj‖y‖−α)Ψj
dy

 (4.28)

(f)
=
∏
j∈K

e
−2πλj(sxkPj)

2
α
∑Ψj
m=1 (Ψj

m )
∫∞
0

r−αm

(1+r−α)
Ψj

rdr
(4.29)
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(g)
= exp

(
−s

2
α
xk

∑
j∈K

λjP
2
α
j C(α,Ψj)

)
, (4.30)

where (a) follows from the independence of the tiers, (b) follows from the

fact that channel powers are independent of the BS locations, (c) follows

from PGFL of PPP [69], (d) follows from the Laplace transform of the gjy ∼

Γ(Ψj, 1), (e) follows from Binomial theorem, and (f) follows from converting to

Cartesian to polar coordinates, and (g) follows by substituting (1 + r−α)−1 →

t to convert the integral into Euler’s Beta function B(x, y) =
∫ 1

0
tx−1(1 −

t)y−1dt.

Using this result, we now derive an upper bound on the coverage prob-

ability and the result is given in Theorem 7.

Theorem 7. The coverage probability of a typical user in a K-tier open access

HetNet is upper bounded by

Pc ≤
∑
k∈K

λkAk, (4.31)

where sxk = βk‖xk‖αP−1
k and

Ak =

∆k−1∑
i=0

1

i!

∫
xk∈R2

(−sxk)i
δi

δ(sxk)
i
LIxk

(sxk)dxk. (4.32)

The upper bound for closed access networks is the same except that the sum-

mation in (4.31) is over the set B instead of K.

Proof. We prove the result for open access networks and will highlight ex-

actly where the proof will differ for closed access networks. Starting with the
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definition of the coverage probability:

Pc = E

[
1

(⋃
k∈K

⋃
xk∈Φk

SIR(xk) > βk

)]
(4.33)

(a)

≤ E

[∑
k∈K

∑
xk∈Φk

1 (SIR(xk) > βk)

]
(4.34)

=
∑
k∈K

E

[ ∑
xk∈Φk

1
(
Pkhkxk‖xk‖−α > βkIxk

)]
, (4.35)

where (a) follows from the union bound and Ixk is the interference received by

the typical user when it is connected to the kth tier BS located at xk, i.e.,

Ixk =
∑
j∈K

∑
y∈Φj\xk

Pjgjy‖y‖−α. (4.36)

Note that for closed access, the summation in (4.34) and (4.35) will be over

B instead of K. This is the only difference in the proofs of open and closed

access cases. Continuing with the proof of open access case, since the channel

power of the direct link is independent of everything else, we can take the

expectation w.r.t. hkxk inside (4.35) to write the coverage probability as

Pc ≤
∑
k∈K

E

[ ∑
xk∈Φk

P
(
hkxk > βkIxk‖xk‖αP−1

k

)]
. (4.37)

Now we first evaluate the probability P(hkx > z) as follows

P(hkx > z)
(a)
=

Γ(∆k, z)

Γ(∆k)

(b)
= e−z

∆k−1∑
i=0

zi

i!
, (4.38)

where (a) follows from hkx ∼ Γ(∆k, 1), and Γ(∆k, z) in the numerator is the

upper incomplete Gamma function given by Γ(∆k, z) =
∫∞
z
u∆k−1e−udu, (b)
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follows by specializing the expression of incomplete Gamma function for the

case when ∆k is an integer. Now denote βk‖xk‖αP−1
k by sxk and substitute

(4.38) in (4.37) to get:

Pc ≤
∑
k∈K

E
∑
xk∈Φk

e−sxk Ixk
∆k−1∑
i=0

(sxkIxk)
i

i!
(4.39)

(a)
=
∑
k∈K

λk

∫
xk∈R2

EIxke
−sxk Ixk

∆k−1∑
i=0

(sxkIxk)
i

i!
dxk (4.40)

=
∑
k∈K

λk

∆k−1∑
i=0

1

i!

∫
xk∈R2

EIxke
−sxk Ixk (sxkIxk)

idxk, (4.41)

where (a) follows from Campbell-Mecke Theorem [69]. Now note that if ∆k

were 1, the expectation term is just LIxk
(sxk), i.e., the Laplace transform of

interference evaluated at sxk . For ∆k > 1, we evaluate the expectation in

terms of the derivative of the Laplace transform as follows

EIxk
[
e−sxk Ixk (sxkIxk)

i
] (a)

= sixkL{t
ifIxk (t)}(sxk) (4.42)

(b)
= (−sxk)i

δi

δ(sxk)
i
LIxk

(sxk), (4.43)

where (a) follows from the definition of the Laplace transform and (b) follows

from the identity tnf(t)←→ (−1)n δn

δ(s)n
L{f(t)}(s). Substituting this in (4.43),

we can express the upper bound on coverage probability in terms of Laplace

transform of interference as follows

Pc ≤
∑
k∈K

λk

∆k−1∑
i=0

1

i!

∫
xk∈R2

(−sxk)i
δi

δ(sxk)
i
LIxk

(sxk)dxk, (4.44)

which completes the proof.
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We note that the above upper bound involves a derivative of Laplace

transform, which makes its numerical evaluation difficult. However, it is possi-

ble to reduce the upper bound to a simple closed form for full SDMA and easy

to evaluate numerical expressions in the other cases. The simplified result is

given in the following Corollary.

Corollary 14. For ∆k = 1, Ak can be reduced to

Ak =
πP

2
α
k β

2
α
k∑

j∈K λjP
2
α
j C(α,Mj)

, (4.45)

and for ∆k > 1 to

Ak =

∆k−1∑
i=0

1

i!

∑ i!

j1!j2! . . . ji!

∫
xk∈R2

(−sxk)ie−Cs
2
α
xk

i∏
`=1

1

(`!)jl

(
−Cs

2
α
−`

xk

`−1∏
n=0

(
2

α
− n

))j`

dxk. (4.46)

Proof. For ∆k = 1,

Ak =

∫
xk∈R2

LIxk

(
βk‖xk‖αP−1

k

)
dxk (4.47)

(a)
=

∫
xk∈R2

exp
(
−β

2
α
k ‖xk‖

2P
− 2
α

k C
)

dxk, (4.48)

where (a) follows from the Laplace transform expression derived in Lemma 10.

Recall that C =
∑

j∈K λjP
2
α
j C(α,Ψj). The closed form expression now follows

directly by converting the integral from Cartesian to polar coordinates.

For ∆k > 1, using the Laplace transform expression and calculating its

derivative using Faà di Bruno’s formula for the composite function (f ◦g)(sxk),

with f(sxk) = exp (sxk), and g(sxk) = −Cs
2
α
xk , the result follows.
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We note that the upper bound is in closed form if ∆k = 1 for all tiers.

The result is given in the following corollary. Even for ∆k > 1, the upper

bound can be numerically computed fairly easily, especially for small values of

∆k.

Corollary 15. The coverage probability in a K-tier open access HetNet with

each kth tier BS performing full SDMA to serve Mk users, i.e., ∆k = 1 ∀ k ∈

K, is given by

Pc ≤ π

∑
k∈K λkP

2
α
k β
− 2
α

k∑K
j=1 λjP

2
α
j C(α,Mj)

. (4.49)

For the closed access case, the summation in the numerator is over B instead

of K.

We now comment on the tightness of the coverage probability upper

bound in various regimes and for various transmission techniques.

4.5.2 Tightness of the Upper Bound

For conciseness, we will focus on the open access networks, with the

understanding that all the arguments remain the same for closed access case.

Since the bound is derived by using the union bound in (4.34), the tightness

depends upon the number of candidate BSs that provide SIR greater than the

target SIR. Denote this random variable by X({∆k}, {Ψk}), which can be

expressed as

X({∆k}, {Ψk}) =
∑
k∈K

∑
xk∈Φk

1 (SIR(xk) > βk) . (4.50)
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The bound holds with equality if there is strictly one candidate serving BS

for a typical user, i.e., P(X({∆k}, {Ψk}) > 1) = 0. This is the case in SISO

HetNets for βk > 1, ∀k, as shown in Chapter 2. For any other general system

configuration, the tightness of the bound depends upon whether the proba-

bility P(X({∆k}, {Ψk}) > 1) is close to zero or not. In general, it is hard

to evaluate simple expressions for this probability. However, it is possible to

make a few simple observations about the expected tightness of the bound.

For instance, the bound gets tight with the increasing values of target SIRs

because X({∆k}, {Ψk}) is an element-wise decreasing function of βk. For fur-

ther insights, we derive the following ordering result for X({∆k}, {Ψk}). The

proof follows using Lemma 8 on the same lines as that of Theorem 5.

Theorem 8 (Ordering result for X). If ∆k ≥ ∆′k and Ψk ≤ Ψ′k ∀ k, then

X({∆k}, {Ψk}) (first order) stochastically dominates X({∆′k}, {Ψ′k}), i.e.

P(X({∆k}, {Ψk}) > n) ≥ P(X({∆′k}, {Ψ′k}) > n),∀ n. (4.51)

Proof. Using the alternate expression of SIR given by (4.6), expressX({∆k}, {Ψk})

in terms of the channel power gains as∑
k∈K

∑
xk∈Φk

1

(
Pk‖xk‖−α∑

j∈K
∑

y∈Φj\xk PjZjk‖y‖
−α > βk

)
, (4.52)

where Zjk = gjy/hkxk is the ratio of the two Gamma random variables. For

another system with Z ′jk = g′jy/h
′
kxk

, Zjk ≤st Z
′
jk if ∆k ≥ ∆′k and Ψj ≤ Ψ′j,

which follows from Lemma 8. The result now follows on the same lines as the

proof of Theorem 5 using Lemma 9 along with the fact that X({∆k}, {Ψk})

is an element-wise non-increasing function of Zjk.
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Remark 8 (Tight Bound in case of SDMA). One of the useful consequences

of Theorem 8 is the prediction of the tightness of the upper bound for SDMA.

One interpretation of the above result is that the bound gets tighter when all the

BSs serve more users, i.e., ∆k decreases and Ψk increases for all the tiers. A

limiting case is that of full SDMA, where the number of users served by each BS

is equal to the number of its transmit antennas. Beyond this point, the bound

gets tighter with the addition of more transmit antennas keeping ∆k = 1. We

revisit these observations in the numerical results section and show that the

bound is in fact surprisingly tight even for two transmit antennas down to

very low target SIRs.

In the rest of this section, we will mainly focus on the full SDMA case.

Recall that in this case ∆k = 1 and Ψj = Mj and the coverage probability

upper bound is given by Corollary 15. As argued in Remark 8 and validated

in the numerical results section, the closed form upper bound is tight and can

be used as an approximation for the coverage probability. For simplicity we

will use equality instead of an approximation.

Remark 9 (Similarity with Pc in SISO case). The coverage probability expres-

sion derived for full SDMA case in Corollary 15 has a striking similarity with

the coverage probability in the SISO case derived in Chapter 2. The only dif-

ference is that the constant C(α,Mj) in that case is simply C(α) =
2π2 csc( 2π

α )
α

.

To facilitate direct comparison of the full SDMA and the SISO cases,

we need to understand the relationship between C(α) and C(α,M). Let us
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take a closer look at the expression of C(α,M) given by (4.20). First note

that C(α,M) is an increasing function of M . Now let us evaluate C(α, 1):

C(α, 1) =
2π

α
B

(
2

α
, 1− 2

α

)
(4.53)

=
2π

α
Γ

(
2

α

)
Γ

(
1− 2

α

)
=

2π2 csc
(

2π
α

)
α

, (4.54)

where the last step follows by Euler’s reflection formula. Hence C(α, 1) is the

same as C(α) derived for the SISO case in Chapter 2. From the monotonicity

of C(α,M) it follows that C(α,M) > C(α) ∀M > 1.

Remark 10 (Full SDMA vs. SISO coverage). Keeping all the system param-

eters the same, the full SDMA coverage is always lower than that of the SISO

case. This is consistent with the coverage probability ordering results derived

in the previous section.

Remark 11 (Scale invariance in open access HetNets). The full SDMA cov-

erage probability is invariant to the density of the BSs, number of tiers and

the transmit powers when the target SIRs and the number of transmit antennas

are the same for all the tiers in open access HetNets. The coverage probability

in this case is given by Pc = π
C(α,M)

β−
2
α . This result is again similar to the

SISO result where the coverage probability reduces to Pc = π
C(α)

β−
2
α . The scale

invariance result does not hold for closed access HetNets.

4.5.3 Area Spectral Efficiency

Although the comparison of various system configurations and trans-

mission techniques is quite conclusive in terms of coverage probability and the
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rate per user, it does not directly account for the fact that some techniques,

such as SDMA, serve higher number of users than the others, such as SU-BF,

and may result in higher sum data rate. To account for this fact, we consider

ASE, which gives the number of bits transmitted per unit area per unit time

per unit bandwidth. For a multi-tier setup, it can be formally defined as

η =
∑
k∈K

Ψkλk log2(1 + βk)Pc
(k), (4.55)

where Pc
(k) is the per tier coverage probability, i.e., coverage probability con-

ditional on the serving BS being in the kth tier. Since the derivations of per

tier coverage probabilities are out of the scope of this chapter, for analytical

comparisons we limit our discussion to the cases where Pc
(k) = Pc for all tiers.

This is guaranteed for the SISO case when the target SIRs are the same for

all tiers and for SDMA when additionally the number of antennas per BS are

also the same for all tiers. Recall that the coverage probabilities under these

assumptions are scale invariant, as discussed in Remark 11. The ASE under

these assumptions can be expressed as

η = Pc log2(1 + β)
∑
k∈K

Ψkλk. (4.56)

We first compare the ASE of the full SDMA and the SISO cases below. The

ASE for full SDMA case is

ηM = M
π

C(α,M)
β−

2
α log2(1 + β)

∑
k∈K

λk, (4.57)

and for the SISO case is

ηS =
π

C(α)
β−

2
α log2(1 + β)

∑
k∈K

λk. (4.58)
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The ratio of the ASEs can be expressed as

ηM
ηS

=
MC(α)

C(α,M)
. (4.59)

Using the fact that

lim
M→∞

C(α,M)

M
2
α

= πΓ(1− 2/α), (4.60)

the ratio of the ASEs can be approximated as

ηM
ηS
≈ M1− 2

αC(α)

πΓ(1− 2/α)
= Γ

(
1 +

2

α

)
M1− 2

α , (4.61)

which shows that the ratio grows with the number of antennas when α > 2.

In the next section we will validate this observation and show that the ASE

in case of full SDMA is always higher than the SISO case. As shown by us

in [114], the approximation is surprisingly tight even for small M .

Another relevant comparison is that of full SDMA and SISO transmis-

sions when both the systems are serving the same density of users. To facilitate

this comparison, the densities of BSs for SDMA case will be lower than the

SISO case by a factor of M. This comparison will provide insights into whether

it is beneficial in terms of ASE to deploy λ BSs per unit area with M antennas

or Mλ single-antenna BSs per unit area. In that case, the ratio of the ASEs

can be approximated as

ηM
ήS
≈ Γ

(
1 +

2

α

)
M− 2

α , (4.62)

which shows that the ratio decreases sublinearly with the number of antennas

when α > 2. We will validate this observation in the next section and show

that the ASE in SISO case is higher than that of the full SDMA case.
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So far, we have focused only on the comparison between full SDMA

and SISO cases, mainly because the coverage probability expressions for these

cases are known in closed form. Since the coverage probability upper bound

for SU-BF cannot be reduced to closed form and moreover the tightness of the

bound is questionable, we cannot perform similar comparisons with SU-BF

unless we derive a simple coverage probability expression, which is out of the

scope of this chapter. Having said that, it is possible to compare the three

cases in the very low target SIR regime. Note that this case is of practical

relevance since current wireless standards support communication down to

very low SIRs, which is about −6 dB for 3GPP LTE [115]. The result is given

in the following proposition.

Proposition 4 (ASE comparison for vanishingly small SIR targets). For the

same infrastructure, i.e., the densities of BSs, the ASEs of SU-BF and SISO

are the same and of full SDMA is higher than the both when βk → 0 for all k.

Proof. The proof follows from the fact that coverage probability is an element

wise decreasing function of {βk} and approaches 1 when βk → 0 for all k.

Therefore, the ASE for this regime is

η =
∑
k∈K

Ψkλk log2(1 + βk), (4.63)

from which the result follows by the fact that Ψk = Mk > 1 for all k for full

SDMA and Ψk = 1 for all k for both SU-BF and SISO cases.

We will revisit this result along with the ASE comparison in the mod-

erate and high target SIR regimes in the next section.

133



−8 −6 −4 −2 0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target SIR β (in dB)

C
o

v
e

ra
g

e
 P

ro
b

a
b

ili
ty

 (
P

c
)

 

 

Grid model

Actual BS locations

PPP model

Both tiers:
SDMA

Both tiers:
SISO

Both tiers:
SU−BF

Figure 4.3: Coverage probability for three different models for macrocells. The
second tier is PPP in all the cases. (K = 2, P = [1, .01], λ2 = 2λ1, α = 3.8).
The number of antennas in case of multi-antenna tiers is M = 4.

4.6 Numerical Results

Since there is a slight difference in the simulation of the proposed multi-

antenna model and the ones proposed in for the SISO HetNets in the previous

chapters, we will briefly summarize the simulation procedure before explaining

the results. Choose a sufficiently large window and simulate the locations of

different classes of BSs as realizations of independent PPPs of given densi-

ties. Associate two independent marks hx and gx with each BS. Assuming the

typical user lies at the origin, calculate the desired signal strength from each

BS using the sequence of marks {hkx} and the interference power using the

sequence {gkx}. Calculate the received SIR from each BS. The user is now
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Figure 4.4: Coverage probability of a two-tier HetNet when both tiers perform
full SDMA (K = 2, P = [1, .01],M1 = M2 = M,λ2 = 2λ1, β1 = β2, α = 3.8).

said to be in coverage if the received SIR from at least one of the BSs belong-

ing to the permissible tiers is more than the corresponding target. Repeating

this procedure sufficient number of times, we have an estimate of the coverage

probability. Using this procedure, we first validate the location model and

establish the tightness of the upper bound for SDMA in the following subsec-

tion. Note that since we are focusing on the interference limited regime in this

chapter, the absolute values of transmit powers and deployment densities are

irrelevant. The results only depend on their respective ratios.

135



4.6.1 Model validation and tightness of the upper bound on Pc

Recall that while the PPP model is sensible for small cells, especially the

ones deployed without planning, such as femtocells, it is dubious for centrally

planned tiers, such as macrocells. Therefore, to validate the proposed location

model for MIMO HetNets, we consider following three setups for a two-tier

HetNet with a special focus on macrocells: i) the macrocells are modeled

by a hexagonal grid, ii) the macrocell locations are drawn from an actual

4G deployment over 40 × 40 km2 area [1, 5], iii) the macrocell locations are

drawn from an independent PPP, as in the proposed model. The second tier

is modeled as a PPP in all three cases. Note that the actual BS locations

used in this comparison can be accurately modeled as a Strauss process, as

shown in [82]. Recall that the same dataset of the actual BS locations was

also used in Chapters 2 and 3 for model validation. For each of these three

location models, we further consider three setups: i) both tiers have 4 transmit

antennas per BS and perform SU-BF, i.e. Mk = 4,Ψk = 1 for all k, ii) both

tiers have a single transmit antenna per BS and perform SISO transmission,

i.e. Mk = 1,Ψk = 1 for all k, and iii) both tiers have 4 transmit antennas per

BS and perform full SDMA, i.e., Mk = 4,Ψk = 4 for all k. The simulation

procedure remains the same as described above for the PPP model, except

of course that the macrocell locations are appropriately drawn from either a

PPP, grid or actual location data for each setup. From the numerical results

presented in Figure 4.3, we note that in all three setups, the proposed model

provides a lower bound on the coverage probability of an actual 4G deployment
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and is about as accurate as the grid model, which provides an upper bound.

These observations are consistent with those of Chapter 2 for SISO HetNets.

In the rest of this section, we will focus solely on the proposed model, i.e., each

tier is modeled as an independent PPP.

After validating the location model, we numerically evaluate the cov-

erage probability of a two-tier HetNet in full SDMA case and compare the

results with the upper bound derived in Corollary 15 in Figure 4.4. As stated

in Remark 8, the bound is tight down to very low target SIRs. Even for M = 2,

the bound is tight down to about −4 dB. A slight gap, although negligible,

at moderate to high target SIRs is due to the border effects in simulation,

also observed earlier in Chapter 2. In particular, the simulation is performed

over a finite window whereas the analysis assumes BSs over an infinite plane.

Nevertheless, this validates our assumption of considering the upper bound

as an approximation of the coverage probability in case of full SDMA in the

previous section.

4.6.2 Effect of adding additional tier on coverage probability

We study the effect of adding a second tier on the coverage probability

of a cellular network in Figures 4.5 and 4.6, where both the first and the second

tier can be one of the three possible types: i) SISO, ii) full SDMA, iii) SU-BF.

In Figure 4.5, we assume that both tiers are in open access. The result shows

that the case where both tiers perform SU-BF results in the highest coverage,

whereas the case where both tiers perform full SDMA leads to the lowest
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Figure 4.5: Comparison of the coverage probability in a two-tier HetNet for
various combinations of multi-antenna techniques (K = 2, P = [1, .01], λ2 =
2λ1, β1 = β2, α = 3.8). The number of antennas in case of multi-antenna tiers
is M = 4.

coverage. This is because SU-BF case has an additional beamforming gain; in

addition to the proximity gain enjoyed by the SISO case. These observations

are consistent with the coverage ordering results derived in Section 4.4. In

Figure 4.6, we study the effect of adding a second tier that is in closed access,

i.e., a typical user cannot connect to the second tier BSs. The performance

of various transmission techniques is in the same order as for the open access

case studied in Figure 4.5. Interestingly, the coverage probability of a typical

user is the same irrespective of whether the new closed access tier is doing

SISO transmission or SU-BF. This is due to the fact that the channel power

distribution of the interfering links in both the cases is Γ(1, 1), i.e., exp(1).
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Figure 4.6: Comparison of the coverage probability in a two-tier HetNet where
the second tier is in closed access (K = 2, P = [1, .01], λ2 = 2λ1, β1 = β2, α =
3.8). The number of antennas in case of multi-antenna tiers is M = 4.

4.6.3 Area spectral efficiency

We compare the ASEs of SU-BF, SISO, and full SDMA transmission

techniques in a 2-tier HetNet in Figure 4.7. Both tiers are assumed to follow

the same transmission technique and the ASE result for SU-BF is computed

numerically by computing the per tier coverage probability. For comparison,

we consider two cases, one in which the density of the BSs in the three setups

remain the same, and the other in which the densities are adjusted such that

the density of users served in the three cases is the same. In the first case,

SU-BF, which always outperforms SISO, even outperforms full SDMA in the

high target SIR regime despite serving smaller number of users. The trends

in the low target SIR regime are consistent with Proposition 4. In the second
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Figure 4.7: Comparison of the ASE in a two-tier HetNet (K = 2, P =
[1, .01], λ2 = 2λ1, β1 = β2, α = 3.8). The number of antennas in case of
multi-antenna tiers is M = 4. Full SDMA corresponds to Ψ = M .

case, where the density of the users is the same in all the cases, the ordering

of the three transmission techniques in terms of ASE is the same as that of

coverage and rate per user.

4.6.4 Effect of having a fraction of BSs in closed access

Before concluding this section, it is important to recall that under PPP

assumption, the proposed model is applicable even if a given fraction of BSs

of a particular tier independently operates in open or closed access. In such a

case, we can divide the original tier into two tiers with appropriate densities,

which is enabled by the fact that independently thinning a PPP leads to two

independent PPPs. For example, for a two-tier HetNet where all the BSs of the
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Figure 4.8: Coverage probability when a fraction 1− θ of the second tier BSs
are in closed access. (K = 2, P = [1, .01], λ2 = 2λ1, α = 3.8). The number of
antennas in case of multi-antenna tiers is M = 4.

first tier and the fraction 0 ≤ θ ≤ 1 of the second tier operate in open access

while the rest in closed access, the second tier can be divided into two tiers

modeled as independent PPPs Φ2(1) (open access tier) and Φ2(2) (closed access

tier) with densities λ2(1) = θλ2 and λ2(2) = (1 − θ)λ2, respectively. There-

fore, the original two-tier network can be reduced to an equivalent three tier

network, where two tiers are in open access and one is in closed access. The

numerical results for such a scenario are presented in Figure 4.8 for various

combinations of target SIRs. Note that the coverage probability of a typi-

cal user under all considered transmission schemes increases linearly with the

fraction of open access BSs θ. Secondly, the loss in coverage probability with

decreasing θ is higher when the target SIR for the closed access BSs is lower
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than that of the first tier open access BSs. Similarly, the loss is lower when

the target SIR for the closed access BSs is higher than the first tier BSs. This

is because when the target SIR for the second tier is lower than the first tier,

the second tier BSs would have contributed more to the coverage probability

had they been in open access than the case when their target SIR is higher

than the first tier BSs.

4.7 Summary

In this chapter, we have generalized the baseline HetNet model pro-

posed in Chapter 2 to multi-antenna HetNets. For any given BS distribution,

we derived ordering results for coverage probability and per user rate to com-

pare different transmission techniques, such as SDMA, SU-BF and baseline

SISO transmission. In addition to significantly generalizing the state-of-the-

art PPP based random spatial models for cellular networks, this approach

circumvents the need for deriving explicit expressions for coverage and rate,

which may not reduce to simple closed forms in all the cases. One interpre-

tation of our results is that for a given total number of transmit antennas, it

is preferable to spread them across many single-antenna BSs vs. fewer multi-

antenna BSs, both in terms of coverage and rate per user. We also showed

that SU-BF provides higher coverage and rate per user than both SISO and

SDMA due to an additional beamforming gain. To account for the fact that

certain transmission techniques, such as SDMA, serve more users and may

provide higher sum-rate, we derived an upper bound on the coverage proba-
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bility assuming an independent PPP model for BS locations and used it to

compare different transmission techniques in terms of ASE.
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Chapter 5

Downlink Rate Distribution in HetNets under

Generalized Cell Selection

The channel randomness consists of two main effects that operate on

two significantly different time scales: i) shadowing, which changes over a much

longer time scale and may impact cell selection decisions, and ii) fading, which

changes over a much smaller time scale and may not impact cell selection. In

all the previous chapters, the channel randomness was modeled as a single

random variable, which could not capture these two effects separately. In

this chapter, we address this shortcoming by generalizing the channel and cell

selection models to incorporate both the long-term shadowing and small-scale

fading effects. For this generalized cell selection model, we characterize the

downlink rate distribution at a typical user accounting for the load on the

serving base station (BS).

5.1 Related Work

Despite the success of random spatial models for HetNets, there remain

several shortcomings that need to be addressed for realistic performance as-

sessment. One of them is the simplistic set of assumptions for channel and
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cell selection models. With a key exception of [116], prior work including the

previous chapters of this dissertation either ignores the impact of shadowing

on cell selection and assumes that a UE always connects to one of the closet

BSs of each tier [49, 117], or lumps all the channel randomness into a single

random variable and assumes that cell selection is based on the maximum

instantaneous received power [5, 118]. Due to these simplifications, neither

of these models is able to capture the fact that the long-term effects such as

distance-based path loss and shadowing impact cell selection, while small-scale

fading does not. This generalization is the main focus of this chapter.

5.2 Contribution

Although this chapter is in the same spirit as [116], the main fo-

cus of [116] is on the downlink signal-to-interference-plus-noise ratio (SINR),

whereas we focus on the downlink data rate that additionally depends upon

the load on each BS class. For instance, to maximize downlink rate, it may be

preferable to connect to small cells even when they offer poor SINR in some

cases, because owing to their smaller load they can more than compensate

by offering a large percentage of time-frequency resources to each UE. Lever-

aging the same general idea of propagation (process) invariance, as discussed

in [116, 119], we show that in addition to the SINR distribution, the service

area approximations resulting from multiplicatively weighted Poisson Voronoi

tessellation, and hence the load on each BS class [112], can be easily extended

to the general cell selection model introduced in this chapter.
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Our analysis concretely demonstrates that the effect of shadowing on

downlink rate and related metrics, such as rate optimal cell-selection bias, can

be equivalently captured by appropriately scaling the transmit powers of each

BS class and then simply selecting one of the BSs that are closest in each tier

for service. This insight immediately generalizes prior art on load balancing,

such as [112]. An interesting observation is that in certain regimes shadowing

naturally balances load across various tiers and hence reduces the need for

artificial cell selection bias.

5.3 System Model

Consider a K-tier HetNet with K classes of BSs, differing in terms

of the transmit power Pk, deployment density λk, and cell-selection bias Bk.

For notational simplicity, define K = {1, 2, . . . , K}. The locations of the kth

tier BSs are modeled by an independent Poisson Point Process (PPP) Φk of

density λk. Define Φ = ∪k∈KΦk. For resource allocation, consider orthogonal

partitioning of resources, e.g., time-frequency resource blocks in orthogonal

frequency division multiple access (OFDMA), where each resource block is

allocated to one UE, and hence there is no intra-cell interference. Modeling

UE locations by an independent PPP Φu of density λu, the downlink analysis

is performed at a typical UE assumed to be located at the origin [70]. The

received power at a typical UE from a kth tier BS located at xk ∈ Φk in a

given resource block is

P (xk) = PkhkxkXkxk‖xk‖−α, (5.1)
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where hkxk ∼ exp(1) models Rayleigh fading, Xkxk models shadowing, and

‖xk‖−α represents standard power-law path loss with exponent α. Note that

since hkxk and Xkxk are both independent of the location of the BS, we will

drop xk from the subscript and denote the two random variables by hk and

Xk, whenever the location of the BS is clear form the context. In the same

spirit as [116,118], our analysis is capable of handling any general distribution

for Xk as long as E
[
X

2
α
k

]
<∞. The origins of this restriction will be discussed

later in this section. The most common assumption for large scale shadowing

distribution is lognormal, where Xk = 10
Xk
10 such that Xk ∼ N(µk, σ

2
k), where

µk and σk are respectively the mean and standard deviation in dB of the

shadowing channel power. Using the moment generating function (MGF) of

Gaussian distribution, the fractional moment is

E
[
X

2
α
k

]
= exp

(
ln 10

5

mk

α
+

1

2

(
ln 10

5

σk
α

)2
)
, (5.2)

which is clearly finite if both the mean and standard deviation of the normal

random variable Xk are finite.

Since fading gain hx changes over much smaller time-scale, and in a

frequency selective channel (such as one using OFDM) can be averaged or

mitigated in the frequency domain, we assume that it does not impact cell

selection. Each UE connects to the BS that provides the highest long-term

biased received power, as explained below. Denote the location of the candidate

kth tier serving BS by x∗k, i.e.,

x∗k = arg max
x∈Φk

PkXx‖x‖−α. (5.3)
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From these K candidate serving BSs, a typical UE connects to

x∗ = arg max
x∈{x∗k}

BkPkXx‖x‖−α, (5.4)

where Bk > 0 is the selection bias introduced to expand the range of small

cells to balance load across the network [112]. The inclusion of shadowing in

cell selection is facilitated by displacement theorem [70], where the key insight

is to express the received power given by (5.1) as

P (xk) = Pkhkxk‖X
− 1
α

kxk
xk‖−α, (5.5)

where the long-term shadowing effects can be interpreted as a random dis-

placement of the location of the BS originally placed at xk ∈ Φk. We make

this notion precise in the following Lemma. Also see [116, 118] for the appli-

cation of this general idea to handle general shadowing or fading distributions

in slightly different setups.

Lemma 11. For a homogeneous PPP Φk ⊂ R2 with density λk, if each point

x ∈ Φk is transformed to y ∈ R2 such that y = X
− 1
α

k x, where {Xk} are i.i.d.,

such that E
[
X

2
α
k

]
< ∞, the new point process Φ

(e)
k ⊂ R2 defined by the trans-

formed points y is also a homogeneous PPP with density λ
(e)
k = λkE

[
X

2
α
k

]
.

Proof. Let B(R2) be the Borel σ-algebra on R2. For A ∈ B(R2), the intensity

measure Λ(A) of a homogeneous PPP Φk is Λk(A) = λk|A|, where |A| denotes

the Lebesgue measure of A. By displacement theorem [70, Theorem 1.3.9], the

transformation of a PPP Φk with probability kernel p(x,A) is a PPP with
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intensity measure:

Λ
(e)
k (A) =

∫
R2

p(x,A)Λk(dx) (5.6)

(a)
= E

∫
R2

1(X
− 1
α

k x ∈ A)λkdx

= E
[∫

R2

1
(
x ∈ AX

1
α
k

)
λkdx

]
(5.7)

= λk|A|E
[
X

2
α
k

]
,

where (a) follows by using the kernel specific to this Lemma. Since {Xk} are

i.i.d. and independent of the location x, setting |A| = dy, we get

Λ
(e)
k (A)(dy) = λkE

[
X

2
α
k

]
dy = λ

(e)
k dy. (5.8)

For a PPP, we need its intensity measure to be locally finite, which leads to

the condition λ
(e)
k = λkE

[
X

2
α
k

]
<∞.

An immediate consequence of this Lemma is the characterization of

received power in terms of the equivalent PPP Φ
(e)
k with density λ

(e)
k = λkEX

2
α
k .

Defining yk = X
− 1
α

kxk
xk, the received power can be equivalently expressed as

P (yk) = Pkhkyk‖yk‖−α, (5.9)

using which the location of the candidate serving BS in kth tier can be equiv-

alently expressed as

y∗k = arg max
y∈Φ

(e)
k

Pk‖y‖−α. (5.10)
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Note that y∗k is simply the closest point to the origin of the equivalent point

process Φ
(e)
k . The location of the serving BS in the equivalent PPP Φ(e) =

∪k∈KΦ
(e)
k can be similarly expressed as

y∗ = arg max
y∈{y∗k}

BkPk‖y‖−α. (5.11)

For notational simplicity define s ∈ RK , such that s(k) ∈ {0, 1},
∑

k∈K s(k) =

1, and s(k) = 1(x∗ = x∗k) = 1(x∗ ∈ Φk), which implies that the kth element

of s takes value 1 if the serving BS belongs to kth tier. We ignore thermal

noise, i.e., network is interference-limited, and assume a full-buffer model for

the interfering BSs [5], i.e., all the interferers are always active. The signal-to-

interference ratio (SIR) at the typical UE when s(k) = 1 is

SIR(x∗) =
Pkhkx∗Xkx∗‖x∗‖−α∑

j∈K
∑

z∈Φj\{x∗} PjhjzXjz‖z‖−α
(5.12)

d
=

Pkhky∗‖y∗‖−α∑
j∈K
∑

z∈Φ
(e)
j \{y∗}

Pjhjz‖z‖−α
= SIR(y∗),

where d denotes equivalence in distribution, which follows from Lemma 11.

Due to this equivalence, the results based solely on SIR or SINR distributions,

such as coverage probability, derived under the assumption that a typical UE

always connects to one of the BSs that are closest in each tier, e.g., [49], can

be easily extended to the general selection model by considering equivalent

BS densities {λ(e)
k }. This has also been independently shown for coverage

probability in [116]. In the next section, we establish a similar equivalence for

downlink rate distribution, that additionally depends upon the BS load.
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5.4 Downlink Rate Distribution

In this section, we generalize the main premise of [112], and characterize

the downlink rate coverage under generalized cell-selection model introduced

in the previous section.

Definition 1 (Rate coverage). Rate coverage Rc is the probability that the

downlink rate R achievable at a typical UE is higher than a predefined lowest

rate T required by a given application, i.e., Rc = P(R > T ). Being the comple-

mentary cumulative distribution function (CCDF), Rc completely characterizes

the rate distribution.

We term the serving BS x∗ ∈ Φ of a typical UE as a “tagged” BS.

Denote the number of UEs served by the tagged BS by Ψk, where subscript

k is for the tier to which this BS belongs. Clearly, Ψk is a random variable

with the following two sources of randomness: i) the area of the region that

the tagged BS serves, in short service area, and ii) conditioned on the area of

the service region, the number of UEs served by the tagged BS is a Poisson

random variable. For tractability, we assume that each BS allocates equal

time-frequency resources to its UEs, i.e., each UE gets rate proportional to

the spectral efficiency of its downlink channel from the serving BS. For total

effective bandwidth W Hz, the downlink rate in bits/sec of a typical UE when

it connects to a kth tier BS is

Rk =
W

Ψk

log2 (1 + SIR(x∗k)) . (5.13)
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Note that SIR(x∗k) and Ψk are in general correlated, e.g., when ‖x∗k‖ is large, the

serving BS is far from the typical UE. This information skews the distribution

of the service area of the tagged BS, and hence of Ψk, towards larger values.

However, characterizing the joint distribution of Ψk and SIR(x∗k) is out of the

scope of this chapter. For tractability, we assume the two random variables to

be independent, which does not compromise the accuracy of our analysis [112].

Under this assumption, the rate coverage Rc is

Rc = P[R > T ] (5.14)

(a)
=
∑
k∈K

P[R > T |s(k) = 1]P[s(k) = 1] (5.15)

=
∑
k∈K

EΨkP (Rk > T )P[s(k) = 1] (5.16)

=
∑
k∈K

EΨkP
(
SIR(x∗k) > 2

T
W

Ψk − 1
)
P[s(k) = 1] (5.17)

(b)
=
∑
k∈K

∞∑
n=1

P (SIR(x∗k) > βn)︸ ︷︷ ︸
Conditional SIR distribution

P(Ψk = n)︸ ︷︷ ︸
Load

P[s(k) = 1]︸ ︷︷ ︸
Selection probability

, (5.18)

where (a) follows from the total probability theorem, and (b) follows by defin-

ing βn = 2
T
W
n − 1 for notational simplicity. We now compute the three prob-

ability terms starting with the selection probability, which we denote by Pk.

Lemma 12 (Selection probability). The probability that a typical UE connects

to a kth tier BS is given by

Pk = P(s(k) = 1) =
λkE

[
X

2
α
k

]
B

2
α
k P

2
α
k∑

j∈K λjE
[
X

2
α
j

]
B

2
α
j P

2
α
j

. (5.19)
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Proof. The selection probability is

Pk = P(s(k) = 1)
(a)
= P(x∗ = x∗k)

(b)
= P(y∗ = y∗k), (5.20)

where {x∗k} in (a) is the set of candidate serving BSs in Φ, {y∗k} in (b) is the set

of candidate serving BSs in Φ(e), and (b) additionally follows from Lemma 11.

Recall that the candidate serving BS y∗k is the closest point of the PPP Φ
(e)
k

to the origin, which reduces to the same setup as [49]. The rest of the proof

follows from the Lemma 1 of [49] using the fact that the density of Φ
(e)
k is

λ
(e)
k = λkE

[
X

2
α
k

]
.

We now derive the conditional SIR distribution, i.e., SIR distribution

conditioned on s(k) = 1. The proof follows directly from Theorem 1 of [49]

after invoking displacement theorem as was done for Lemma 12, and is hence

skipped.

Lemma 13 (Conditional SIR distribution). The conditional SIR distribution

is

P(SIR(x∗k) > β) =

∑
j∈K λjE

[
X

2
α
j

]
B

2
α
j P

2
α
j∑

j∈K λjE
[
X

2
α
j

]
P

2
α
j

[
B

2
α
j +B

2
α
k F
(
β, α,

Bj
Bk

)] (5.21)

where

F(β, α, z) =

(
2βz

2
α
−1

α− 2

)
2F1

[
1, 1− 2

α
, 2− 2

α
,−β

z

]
,

and 2F1[a, b, c, z] = Γ(c)
Γ(b)Γ(c−b)

∫ 1

0
tb−1(1−t)c−b−1

(1−tz)a dt denotes the Gauss hypergeomet-

ric function.
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For the distribution of load Ψk, we use the approximation proposed in

Lemma 3 of [112]. The main idea is to approximate the service area of a typical

kth tier BS by the area of a typical Poisson Voronoi with the same mean Pk
λk

.

Now since a typical UE has a higher chance of selecting a BS with bigger service

area, the area of the tagged BS is biased towards being larger than a typical

BS of the same tier. This is similar to the waiting bus paradox associated with

Point processes in R. Accounting for this bias, the load distribution is given

below. The proof is the same as Lemma 3 of [112] with the understanding

that the effect of shadowing on cell selection is captured by Pk.

Lemma 14 (Load on tagged BS). The distribution of the load served by x∗k is

P(Ψk = n+ 1) =

3.53.5

n!

Γ(n+ 4.5)

Γ(3.5)

(
λuPk
λk

)n(
3.5 +

λuPk
λk

)−(n+4.5)

.

The mean load is E[Ψk] = 1 + 1.28λuPk
λk

.

Substituting Lemmas 12, 13, and 14 in (5.18), we get a fairly simple

expression for rate coverage.

Theorem 9 (Rate coverage). The rate coverage is Rc =

K∑
k=1

∑
n≥0

λkE
[
X

2
α
k

]
B

2
α
k P

2
α
k P(Ψk = n+ 1)∑

j∈K λjE
[
X

2
α
j

]
P

2
α
j

[
B

2
α
j +B

2
α
k F
(
βn+1, α,

Bj
Bk

)]
where Pk is given by Lemma 12, P(Ψk = n+ 1) by Lemma 14, and recall that

βn+1 = 2
T
W

(n+1) − 1.
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We will validate the load approximation and study the effect of shad-

owing on load balancing in the next section. This section is concluded with

the following remarks.

Remark 12 (Invariance). If the shadowing distribution is such that E
[
X

2
α
k

]
=

c, for all k ∈ K, the downlink rate distribution is invariant to the shadowing

distributions of all the tiers.

Remark 13 (Equivalent HetNet model). A HetNet model with kth tier trans-

mit power
(
E
[
X

2
α
k

])α
2

Pk, no shadowing, and cell selection based on aver-

age biased receive power with selection bias {Bk}, leads to the same expres-

sion for rate coverage as given by Theorem 9 for the generalized cell selection

model. Due to this equivalence, the key results derived under no shadowing,

e.g., in [49, 112], can be easily extended to the generalized cell selection model

by appropriately scaling the transmit powers.

5.5 Numerical Results

For numerical results, we consider a two tier HetNet, e.g., coexisting

macro and pico cells, and assume that the shadowing distribution for each tier

is log-normal with mean µk dB and standard deviation σk dB. Throughout this

section, we assume α = 4, P2 = P1 − 23 dB, W = 10 MHz, and µ = [0 0] dB.

We first validate the load distribution given by Lemma 14 in Figure 5.1. In

addition to the actual load under the generalized cell selection model, we also

plot the load offered to the tagged BS under an equivalent model suggested in
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Figure 5.1: CDF of load Ψk with λu = 20λ1, λ2 = 2λ1 for K = 2, λ2 = 0 for
K = 1, σ = [4 4] dB (first) and [4 8] dB (second). B is in dB.
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Remark 13. We first note that the analytic approximation given by Lemma 14

is fairly accurate, which along with the fact that the other components of

rate expression, i.e., conditional SIR distribution and selection probability, are

exact, leads to a very tight approximation for rate distribution, as validated in

Figure 5.2. Comparing the rate distributions for two sub-figures of Figure 5.1,

we note that there is a natural balancing of load across tiers when E
[
X

2
α
2

]
>

E
[
X

2
α
1

]
compared to the baseline case of no shadowing, which by Remark 13 is

equivalent to the case when E
[
X

2
α
2

]
= E

[
X

2
α
1

]
, as in the first sub-figure. This

load balancing can be understood in terms of the equivalent model proposed in

Remark 13, i.e., in this case shadowing increases the effective transmit power

of small cells relative to the baseline and hence expands their coverage areas.

In Figure 5.2, we plot the rate coverage and the fifth percentile rate, i.e.,

the rate value such that 95% of the UEs achieve higher rate than this value.

Both these results are consistent with the load balancing observations made

in Figure 5.1, e.g., the optimal selection bias that maximizes fifth percentile

rate is smaller when E
[
X

2
α
2

]
> E

[
X

2
α
1

]
. Due to a smaller artificial bias, this

case also achieves the highest rate. In Figure 5.2, we also validate the rate

expression by comparing it with the simulations and a special case in which

the load on a tagged BS is assumed to be deterministic and equal to its mean

E[Ψk], given by Lemma 14.
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5.6 Summary

In this chapter, we have derived the downlink rate distribution under a

generalized cell-selection model, which explicitly differentiates between long-

term channel effects such as shadowing and path-loss, and small-scale effects

such as fading. This generalizes the channel and cell selection models of all the

previous chapters, where the channel randomness was captured using a single

random variable and cell selection was based on the maximum instantaneous

received signal strength. As an application of these results, we studied the

effect of shadowing on load balancing, and showed that in certain regimes

shadowing naturally balances load across various tiers and hence reduces the

need for artificial cell selection bias.
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Chapter 6

Fundamentals of HetNets with Energy

Harvesting

The possibility of having a self-powered base station (BS) is becoming

realistic due to several parallel trends. First, as discussed in Chapter 1, BSs are

being deployed ever-more densely and opportunistically to meet the increasing

capacity demand [30]. These new types of BSs (small cells) cover much smaller

areas and hence require significantly smaller transmit powers compared to the

conventional macrocells. Second, due to the increasingly bursty nature of traf-

fic, the loads on the BSs will experience massive variation in space and time,

as discussed in Chapter 3 [102]. In dense deployments, this means that many

BSs can, in principle, be turned OFF most of the time and only be requested

to wake up intermittently based on the traffic demand. Third, energy har-

vesting techniques, such as solar power, are becoming cost-effective compared

to the conventional sources [120]. This is partly due to the technological im-

provements and partly due to the market forces, such as increasing taxes on

conventional power sources, and subsidies and regulatory pressure for greener

techniques. Fourth, high-speed wireless backhaul is rapidly becoming a real-

ity for small cells, which eliminates the need for other wired connections [31].

Therefore, being able to avoid the constraint of requiring a wired power con-
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nection is even more attractive, since it would open up entire new categories

of low-cost “drop and play” deployments, especially of small cells.

6.1 Related Work and Motivation

The randomness in the energy availability at a transmitter demands

significant rethinking of conventional wireless communication systems. There

are three main directions taken in the literature to address this challenge,

which we order below in terms of complexity and realism. The first considers

a relatively simple setup consisting of single full-buffer isolated link, and study

optimal transmission strategies under a given energy arrival process [121–123].

The effect of data arrivals can be additionally incorporated by considering two

consecutive queues at the transmitter, one for the data and the other for the

energy arrivals [124,125].

Second, a natural extension of an isolated link, considers a broadcast

channel, where a single isolated transmitter serves multiple users. Again one

can assume full-buffer at the transmitter so that the transmission strategies

need to be adapted only to the energy arrival process, e.g., in [126]. More

realistically, one can relax the full-buffer assumption to explicitly consider

data arrivals as discussed above for the isolated link, and optimize various

metrics, e.g., minimize packet transmission delay [127], or maximize system

throughput [128].

The third and least investigated direction is to consider multiple self-

powered transmitters, which significantly generalizes the above two directions.
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Generally speaking, the main goal is to adapt transmission schemes based

on the energy and load variations across both time and space. While some

progress has been recently made in advancing the understanding of mobile

ad-hoc networks (MANETs) with self-powered nodes, see [129, 130] and ref-

erences therein, our understanding of cellular networks in a similar setting is

severely limited. This is partly due to the fact that conventional cellular net-

works consisted of big macro BSs that required fairly high power, and it made

little sense to study them in the context of energy harvesting. As discussed

earlier, this is not the case with a HetNet, which may support “drop and play”

deployments, especially of small cells, in the future. Comprehensive modeling

and analysis of this setup is the main focus of this chapter.

To capture key characteristics of HetNets, such as heterogeneity in in-

frastructure, and increasing uncertainty in BS locations, we consider a general

K-tier cellular network with K different classes of BSs, where the BS loca-

tions of each tier are sampled from an independent Poisson Point Process

(PPP), as discussed in Chapter 2. This model was proposed for HetNets by

us in [5, 77], with various extensions and generalizations in [49, 51, 56]. The

model, although simple, has been validated as reasonable since then both by

empirical evidence [82] and theoretical arguments [113]. Due to its realism

and tractability, it has become an accepted model for HetNets, see [87] for a

detailed survey.
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6.2 Contributions

Tractable and general system model. We propose a general system

model consisting of K classes of self-powered BSs, which may differ in terms

of the transit power, deployment density, energy harvesting rate and energy

storage capacity. Due to the uncertainty in the energy availability, a BS may

need to be kept OFF and allowed to accumulate enough energy before it

starts serving its users again. In the meanwhile, its load is transferred to

the neighboring BSs that are ON. Thus, at any given time a BS can be in

either of the two operational states: ON or OFF. In this chapter, we focus

on uncoordinated operational strategies, where the operational state of each

BS is toggled independently of the other BSs. For tractability, we assume

that the network operates on two time scales: i) long time scale, over which

the decision to turn a BS ON or OFF is taken, and ii) short time scale, over

which the scheduling and cell selection decisions are taken. As discussed in

Section 6.4, this distinction facilitates analysis in two ways: a) it allows us to

assume that the operational states of the BSs are static over short time scale,

and b) it allows us to consider the average effects of cell selection over long

time scale.

Availability region. We show that the fraction of time a kth tier BS

can be kept in the ON state, termed the availability ρk, is a key metric for

self-powered cellular networks. Using tools from random walk theory, fixed

point analysis, and stochastic geometry, we characterize the set of K-tuples

(ρ1, ρ2, . . . ρK), termed the availability region, that are achievable with a set of
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general uncoordinated strategies. Our analysis involves modeling the temporal

dynamics of the energy level at each BS as a birth-death process, deriving

energy utilization rate for each class of BSs using stochastic geometry, and

using hitting/stopping time analysis for a Markov process to prove that there

exists a fundamental limit on the availabilities {ρk}, which cannot be surpassed

by any uncoordinated strategy. We also construct an achievable scheme that

achieves this upper limit on availability for each class of BSs.

Notion of “optimality” for self-powered HetNets. The charac-

terization of exact availability region lends a natural notion of optimality to

self-powered HetNets under the assumptions of the proposed model. Our anal-

ysis concretely demonstrates that if the K-tuple (ρ̂1, ρ̂2, . . . , ρ̂K) corresponding

to the optimal performance of the network, e.g., in terms of downlink rate, lies

in the availability region, the performance of the HetNet with energy harvest-

ing is the same as the one with reliable energy sources. Using recent results

for downlink rate distribution in HetNets [112, 131], we also show that it is

not always optimal from downlink data rate perspective to operate the net-

work in the regime corresponding to the maximum availabilities, i.e., it may

be preferable to keep a certain fraction of BSs OFF despite having enough

energy.
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Table 6.1: Notation Summary

Notation Description
K Set of indices for BS tiers, i.e., K = {1, 2, . . . , K}

Φk, λk; Φ Independent PPP modeling locations of kth tier BSs, its
density; set of all BSs, i.e., Φ = ∪k∈KΦk

Φu;λu An independent PPP modeling user locations, density of
users

µk; νk; Nk Energy harvesting rate, utilization rate, and energy
storage capacity of a kth tier BS

ρk;R Availability of kth tier BSs; availability region

Φ
(a)
k , λ

(a)
k ; Φ(a) Independent PPP modeling the kth tier BSs that are

available, its density λ
(a)
k = ρkλk; all available BSs, i.e.,

Φ(a) = ∪k∈KΦ
(a)
k

Pk Downlink transmit power of a kth tier BS to each user in
each resource block

hk;Xk;α Small scale fading gain hk ∼ exp(1); large scale shadowing
gain (general distribution) from a kth tier BS; path loss

exponent

x
∗(z)
k , x∗(z) Candidate serving BS in Φ

(a)
k for user at z ∈ Φu, serving

BS for z ∈ Φu

Pc; β Coverage probability; target SIR
Rc;T Rate coverage; target rate
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6.3 System Model

6.3.1 System Setup and Key Assumptions

We consider a K-tier cellular network consisting of K different classes

of BSs. For notational simplicity, define K = {1, 2, . . . , K}. As in Chapters 2

and 3, the locations of the BSs of the kth tier are modeled by an independent

PPP Φk of density λk. Each BS has an energy harvesting module and an

energy storage module, which is its sole source of energy. The BSs across

tiers may differ both in terms of how fast they harvest energy, i.e., the energy

harvesting rate µk joules/sec, and how much energy they can store, i.e., the

energy storage capacity (or battery capacity) Nk joules. We assume that the

normalization of µk and Nk is such that each user requires 1 joule of energy

per sec. This assumption can be easily relaxed to incorporate users requiring

more energy under sufficient randomization, but this case is not in the scope of

this chapter. For resource allocation, we assume an orthogonal partitioning of

resources, e.g., time-frequency resource blocks in orthogonal frequency division

multiple access (OFDMA), where each resource block is allocated to a single

user. Due to orthogonal resource allocation, there is no intra-cell interference.

Note that a user can be allocated multiple resource blocks as discussed in

detail in the sequel. We further assume that a kth tier BS transmits to each

user with a fixed power Pk in each resource block, which may depend upon

the energy harvesting parameters, although we do not study this dependence

in this chapter. The target SIR β is the same for all the tiers.

The energy arrival process at a kth tier BS is modeled as a Poisson
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process with mean µk. Since most energy harvesting modules contain smaller

sub-modules, each harvesting energy independently, e.g., small solar cells in

a solar panel, the net energy harvested can be modeled as a Binomial pro-

cess, which approaches the Poisson process when the number of sub-modules

grow large. Interestingly, this model has been validated using empirical mea-

surements for a variety of energy harvesting modules [132]. Since the energy

arrivals are random and the energy storage capacities are finite, there is some

uncertainty associated with whether the BS has enough energy to serve users

at a particular time. Under such a constraint, it is required that some of the

BSs be kept OFF and allowed to recharge while their load is handled by the

neighboring BSs that are ON. Besides, as discussed in the sequel, it may also

be preferable to keep a BS OFF despite having enough energy. Therefore, a

BS can be in either of the two operational states: ON or OFF. The decision to

toggle the operational state from one to another is taken by the operational

strategies that can be broadly categorized into two classes.

Uncoordinated: In this class of strategies, the decision to toggle the

operational state, i.e., turn a BS ON or OFF, is taken by the BS independently

of the operational states of the other BSs. For example, a BS may decide to

turn OFF if its current energy level reaches below a certain predefined level

and turn back ON after harvesting enough energy. The BS may additionally

consider the time for which it is in the current state while making the decision.

For instance, a BS may start a timer whenever the state is toggled and may

decide to toggle it back when the timer expires or the energy level reaches a
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certain minimum value, whichever occurs first. This class will be the main

focus of this chapter.

Coordinated: In this class of strategies, the decision to toggle the

state of a particular BS is dependent upon the states of the other BSs. For

example, the BSs may be partitioned into small clusters where only a few BSs

in each cluster are turned ON. The decision may be taken by some central

entity based on the current load offered to the network. This is useful in the

cases where the load varies by orders of magnitude across time, e.g., due to

diurnal variation. A small fraction of BSs is enough to handle smaller load,

with the provision of turning more ON as the load gradually increases. In

addition to the load, other factors such as network topology and interference

among BSs may also affect the decision.

For tractability, we define the following two time scales over which the

network is assumed to operate.

Definition 2 (Time scales). The scheduling and cell association decisions are

assumed to be taken over a time scale that is of the order of the scheduling block

duration. We term this time scale as a short time scale. On the other hand,

the operational policies that toggle the operational state of a BS are assumed

to be defined on a much longer time scale. We will henceforth term this time

scale as a long time scale.

As discussed in the sequel, this distinction is the key to tractability

because of two reasons: i) it allows us to assume the energy states of the
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BSs to be static over short time scales, and ii) it allows us to consider the

average effects of cell selection while determining the energy utilization rates

over long time scales. Due to uncertainty in the energy availability or due

to the optimality of a given performance metric, e.g., downlink rate, all the

BSs in the network may not always be available to serve users. This is made

precise by defining availability of a BS as follows.

Definition 3 (Availability). A BS is said to be available if it is in the ON

state as a part of the operational policy and has enough energy to serve at least

one user, i.e., has at least one unit of energy. The probability that a BS of tier

k is available is denoted by ρk, which may be different for each tier of BSs due

to the differences in the capabilities of the energy harvesting modules and the

load served. For notational simplicity, we denote the set of availabilities for

the K tiers by {ρk}.

For uncoordinated strategies, it is reasonable to assume that the cur-

rent operational state (ON or OFF) of a BS is independent of the other BSs,

especially since the energy harvesting processes are assumed to be indepen-

dent across the BSs. The coupling in the transmission of various BSs that

arises due to interference and mobility is ignored. Under this independence

assumption, the set of ON BSs of the kth tier form a PPP Φ
(a)
k with density

λ
(a)
k = λkρk. This results from the fact that the independent thinning of a

PPP leads to a PPP with appropriately scaled density [76]. As will be evident

from the availability analysis in the next section, this abstraction is the key

that makes this model tractable and leads to meaningful insights.
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6.3.2 Propagation and Cell Selection Models

For this discussion it is sufficient to consider only the BSs that are

available, i.e., the ones that are in the ON state. For notational ease, define

Φ(a) = ∪k∈KΦ
(a)
k . The user locations are assumed to be drawn from an indepen-

dent PPP Φu of density λu. More sophisticated non-uniform user distribution

models can also be considered, e.g., using tools from Chapter 3, but are not

in the scope of this chapter. The received power at a user located at z ∈ Φu

from a kth tier BS placed at xk ∈ Φ
(a)
k in a given resource block is

P (z, xk) = Pkh
(z)
kxk

X
(z)
kxk
‖xk − z‖−α, (6.1)

where h
(z)
kxk
∼ exp(1) models Rayleigh fading, X

(z)
kxk

models large scale shadow-

ing, and ‖xk − z‖−α represents standard power-law path loss with exponent

α, for the wireless channel from xk ∈ Φ
(a)
k to z ∈ Φu. Note that since h

(z)
kxk

and

X
(z)
kxk

are both independent of the locations xk and z, we will drop xk and z

from the subscript and superscript, respectively, and denote the two random

variables by hk and Xk, whenever the locations are clear from the context.

For cell selection, we assume that each user connects to the BS that

provides the highest long term received power, i.e., small scale fading gain h
(z)
kx

does not affect cell selection. For a cleaner exposition, we denote the location

of the candidate kth tier serving BS for z ∈ Φu by x
∗(z)
k ∈ Φ

(a)
k , which is

x
∗(z)
k = arg max

x∈Φ
(a)
k

PkX
(z)
xk ‖x− z‖

−α. (6.2)

A user z ∈ Φu now selects one of these K candidate serving BSs based on the

average received signal power, i.e., the location of the serving BS x∗(z) ∈ {x∗(z)k }
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Figure 6.1: Birth-death process modeling the temporal dynamics of the energy
available at a kth tier BS.

is

x∗(z) = arg max
x∈{x∗(z)k }

PkX
(z)
kx ‖x− z‖

−α. (6.3)

Owing to the displacement theorem for PPPs [70], any general distri-

bution of Xk can be handled in the downlink analysis of a typical user as long

as E
[
X

2
α
k

]
<∞. This is formally discussed in detail in Chapter 5. Interested

readers can also refer to [116, 131] for relevant discussions. The most com-

mon assumption for large scale shadowing distribution is lognormal, where

Xk = 10
Xk
10 such that Xk ∼ N(mk, σ

2
k), where mk and σk are respectively the

mean and standard deviation in dB of the shadowing channel power. For

lognormal distribution, E
[
X

2
α
k

]
= exp

(
ln 10

5
mk
α

+ 1
2

(
ln 10

5
σk
α

)2
)

, which can be

easily derived using moment generating function (MGF) of Gaussian distri-

bution [131]. The fractional moment is clearly finite if both the mean and

standard deviation of the normal random variable Xk are finite. For this sys-

tem model, we now study the availabilities of different classes of BSs.
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6.4 Availability Analysis

The first challenge in studying the model introduced in the previous

section lies in characterizing how the energy available at the BS changes over

time. Without loss of generality, we index the energy states of a kth tier BS as

0, 1, . . . , Nk, and model the temporal dynamics as a continuous time Markov

chain (CTMC), in particular a birth-death process, as shown in Figure 6.1.

When the BS is ON, the energy increases according to the energy harvesting

rate and decreases at a rate that depends upon the number of users served

by that BS. When the BS is OFF, it does not serve any users and hence the

birth-death process reduces to a birth-only process. We now derive a closed

form expression for the rate νk at which the energy is utilized at a typical kth

tier BS.

6.4.1 Modeling Energy Utilization Rate

Before modeling the energy utilization rate, there are two noteworthy

points. First, if a BS is not available, the load originating from its original

area of coverage is directed to the nearby BSs that are available, thus increas-

ing their effective load. Equivalently, the coverage areas of the BSs that are

available get expanded to cover for the BSs that are not available, as shown

in Figure 6.2. The second one is related to the control channel coverage and

given in the following remark. Recall that control channel coverage Pc is the

probability that the received signal-to-interference-ratio (SIR) is greater than

the predefined minimum SIR needed to establish a connection with the BS.
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Thus the users that are not in control channel coverage cannot enter the net-

work and hence cannot access the data channels. Therefore, these users do

not account for any additional energy expenditure at the BS.

Remark 14 (Control channel coverage). The control channel coverage Pc is

independent of the densities of the BSs in an interference-limited network when

the target SIR is the same for all tiers [5, 49, 131]. While this result will be

familiar to those exposed to recent coverage probability analysis using stochastic

geometry, it is not directly required in this section except the interpretation

that the density of users effectively served by the network is independent of the

effective densities of the BSs and hence independent of {ρk}. We will validate

this claim in Section 6.4.5.

Assuming fixed energy expenditure for control signaling, only the users

that are in control channel coverage will result in additional energy expenditure

at the BS. As remarked above, the density of such users is Pcλu. Each user is

assumed to require 1 joule of energy per sec such that the net energy utilization

process at each BS can be modeled as a Poisson process with mean defined by

the average number of users it serves. It should be noted that the assumption

of 1 joule energy requirement is without any loss of generality and is made to

simplify the notation. To find the average number of users served by a typical

BS of each class, we first need to define its service region whose statistics such

as its area will, in general, be different for different classes of BSs due to the

differences in the transmit powers as evident from Figure 6.2. The service

region can be formally defined as follows.
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Figure 6.2: Coverage regions for a two-tier energy harvesting cellular network
(averaged over shadowing). The unavailable BSs are denoted by hollow circles.
The thin lines form coverage regions for the baseline case assuming all the BSs
were available.

Definition 4 (Service region). The service region Ak(xk) ⊂ R2 of the kth-tier

BS located at xk ∈ Φ
(a)
k is

Ak(xk) =

{
z ∈ R2 : xk = arg max

x∈{x∗(z)j }
PjX

(z)
j ‖x− z‖−α,

where x
∗(z)
j = arg max

x∈Φ
(a)
j

PjX
(z)
j ‖x− z‖−α

}
. (6.4)

We now derive the average area of the service region of a typical BS of

each tier in the following Lemma.

Lemma 15 (Average area of the service region). The average area of the
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service region of a kth tier typical BS is given by

E[|Ak|] =
E
[
X

2
α
k

]
P

2
α
k∑K

j=1 ρjλjE
[
X

2
α
j

]
P

2
α
j

. (6.5)

Proof. The proof follows from the definition of the service area using basic

ideas from Palm calculus. Denote by Pxk
Φ

(a)
k

(·) and Exk
Φ

(a)
k

[·], the conditional

(Palm) probability and conditional expectation, conditioned on xk ∈ Φ
(a)
k .

Please refer to [69, 70, 133] for details on Palm calculus. Before we derive

the average area, note that for given realizations of the BS locations and the

channel gains, the area of the service region of the kth tier BS is

|Ak(xk)| =
∫
R2

∏
j∈K

∏
x∈Φ

(a)
j

1

(
PkX

(z)
k

‖xk − z‖α
≥

PjX
(z)
j

‖x− z‖α

)
dz. (6.6)

The average service area can now be expressed as

E[|Ak(xk)|]
(a)
= EExk

Φ
(a)
k

[|Ak(xk)|] (6.7)

(b)
= EE0

Φ
(a)
k

[|Ak(0)|] (c)
= EE

Φ
(a)
k

[|Ak(0)|], (6.8)

where (a) follows by distributing the expectation over the point process Φ
(a)
k

and the rest of the randomness, (b) follows from the stationarity of the homo-

geneous PPP, and (c) follows from Slivnyak’s theorem [69]. Substituting the

expression for |Ak(0)| in (6.8) and distributing the expectation across various

random quantities, we can express the average area as E[|Ak(xk)|] =

EXk

∫
R2

∏
j∈K

E
Φ

(a)
j

∏
x∈Φ

(a)
j

EXj1

(
PkXk

‖z‖α
≥ PjXj

‖x− z‖α

)
dz, (6.9)
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where the expectations over point processes Φ
(a)
j and shadowing gains Xj can

be moved inside respective product terms due to independence, and superscript

on X
(z)
k and X

(z)
j are removed for notational simplicity. The expectation over

point process Φ
(a)
j can be evaluated using the probability generating functional

(PGFL) [69], which simplifies the average area expression to

EXk

∫
R2

∏
j∈K

e
−ρjλjEXj

∫
R2 1

(
PkXk
‖z‖α <

PjXj
‖x−z‖α

)
dx

dz. (6.10)

Solving the integral in the exponential, we get

EXk

∫
R2

∏
j∈K

exp

−ρjλjπ‖z‖2
PjE

[
X

2
α
j

]
PkX

2
α
k

 dz, (6.11)

which can be equivalently expressed as

EXk

∫
R2

exp

−ρjλjπ‖z‖2

∑
j∈K PjE

[
X

2
α
j

]
PkX

2
α
k

 dz, (6.12)

from which the result follows by solving the integral and taking expectation

with respect to Xk.

Using the expression for average area, the average number of users

served by a typical BS of kth tier, equivalently the energy utilization rate, is

now given by the following corollary.

Corollary 16 (Energy utilization rate). The energy utilization rate, i.e., the

number of units of energy required per second, at a typical BS of kth tier is

given by

νk = PcλuE[|Ak|] =
PcλuE

[
X

2
α
k

]
P

2
α
k∑K

j=1 ρjλjE
[
X

2
α
j

]
P

2
α
j

, (6.13)
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where recall that Pc denotes the coverage probability, which is independent

of the availabilities and will be calculated later in this section and is given

by (6.50).

Remark 15 (Invariance to shadowing distribution). From (6.13), note that

the energy utilization rate νk is invariant to the shadowing distribution of all

the tiers if E
[
X

2
α
j

]
= E

[
X

2
α
k

]
, for all j, k ∈ K. For lognormal shadowing, this

corresponds to the case when mj = mk and σj = σk, for all j, k ∈ K.

It should be noted that the availabilities of various tiers are still un-

known and even if all the system parameters are given, it is still not possible

to determine the energy utilization rate from the above expression. This will

lead to fixed point expressions in terms of availabilities, which is the main

focus of the rest of this section. It is also worth mentioning that the energy

utilization rate derived above is just for the service of the active users. There

are some other components of energy usage, e.g., control channel signaling and

backhaul that are not modeled. While we can incorporate their effect in the

current model by assuming fixed energy expenditure and deducting it directly

from the energy arrival rate, a more formal treatment of these components is

left for future work.

6.4.2 Availabilities for a Simple Operational Strategy

After deriving the energy utilization rate in Corollary 16 and recalling

that the energy harvesting rate is µk, we can, in principle, derive BS availabili-

ties for a variety of uncoordinated operational strategies. We begin by looking
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at a very simple strategy in which a BS is said to be available when it is not

in energy state 0, i.e., it has at least one unit of energy. As shown later in this

section, this strategy is of fundamental importance in characterizing the avail-

ability region for the set of general uncoordinated strategies. The availability

of a kth tier BS under this strategy can be derived directly from the stationary

distribution of the birth-death process as

ρk = 1−

 1− µk
νk

1−
(
µk
νk

)Nk+1

 = 1−


1−

µk
∑K
j=1 ρjλjE

[
X

2
α
j

]
P

2
α
j

PcλuE
[
X

2
α
k

]
P

2
α
k

1−

(
µk
∑K
j=1 ρjλjE

[
X

2
α
j

]
P

2
α
j

PcλuE
[
X

2
α
k

]
P

2
α
k

)Nk+1

 .

(6.14)

Interestingly we get a set of K fixed point equations in terms of avail-

abilities, one for each tier. Clearly ρk ≡ 0, ∀ k ∈ K, is a trivial solution for

this set of fixed point equations. However, this means that none of the BSs

is available for service, which physically means that the users are in “outage”

if there is no other, in particular positive, solution for the set of fixed point

equations. We will formalize this notion of outage, resulting from energy un-

availability, later in this section. Due to the form of these equations, it is not

possible to derive closed form expressions for the positive solution(s) of {ρk}.

However, it is possible to establish a necessary and sufficient condition for the

existence and uniqueness of a non-trivial positive solution. Before establishing

this result, we show that the function of {ρk} on the right hand side of (6.14)

satisfies certain key properties. For notational simplicity, we call this function
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corresponding to kth tier as gk : RK → R, using which the set of fixed point

equations given by (6.14) can be expressed in vector form as
ρ1

ρ2
...
ρK

 =


g1(ρ1, ρ2, . . . , ρK)
g2(ρ1, ρ2, . . . , ρK)

...
gK(ρ1, ρ2, . . . , ρK)

 = Ξ(ρ1, ρ2, . . . , ρK), (6.15)

where we further define function Ξ : RK → RK for simplicity of notation. Our

first goal is to study the properties of function gk : RK → R, which can be

rewritten as

gk(x) = 1−

 1−
∑K

j=1 ajxj

1−
(∑K

j=1 ajxj

)N
 , (6.16)

where x ∈ RK , N > 1, and ak ∈ R+ for all k ∈ K. The relevant properties are

summarized in the following Lemma.

Lemma 16 (Properties). The function gk(x) : RK → R defined by (6.16)

satisfies following properties for all ak > 0, k ∈ K:

1. gk(x) is an element-wise increasing function of x.

2. gk(x) is concave, i.e., it is a concave function of xk ∈ R for all k ∈ K.

Proof. Since both the properties (monotonicity and concavity) are element-

wise properties, it is enough to consider the given function as a function of

single variable x ∈ R. After dropping the subscript k and with slight over-

loading of notation, we denote this function as g : R→ R, which is

g(x) = 1−
(

1− b− ax
1− (b+ ax)N

)
, (6.17)
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where b ∈ R+ is a constant when we study element-wise properties. We now

do the following substitution x + b
a
→ x, which just shifts the function along

x-axis and hence neither impacts the monotonicity nor concavity of g(x). The

simplified expression is

g(x) = 1−
(

1− ax
1− (ax)N

)
. (6.18)

Note that although both the numerator and denominator of the second term

in the above expression go to 0 as x→ 1
a
, it is easy to show that the function

is continuous at this point and the limit is

lim
x→ 1

a

g(x) =
N − 1

N
. (6.19)

To prove that the function is monotonically increasing, it is enough to show

that the partial derivative with respect to x is positive. The partial derivative

can be expressed as

g′(x) =
a

(1− (ax)N)2

(
(N − 1)(ax)N + 1−N(ax)N−1

)
, (6.20)

It is easy to show that the term inside the bracket is positive except at x = 1
a
,

where it has a minima and takes value 0. Further, using L’Hôpital’s rule it is

straightforward to show

lim
x→ 1

a

g′(x) = a
N − 1

2N
> 0, (6.21)

which completes the proof for the monotonicity property. To show that the

function is concave, we need to show that the double derivative with respect

to x is negative, which is

g′′(x) = −a2N(ax)N−2 1− ax
(1− (ax)N)3

×
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(
(N − 1)(1− (ax)N+1)

1− ax
− ax(N + 1)(1− (ax)N−1)

1− ax

)
, (6.22)

where the term inside the bracket is positive except at x = 1
a
, where it has a

minima and takes value 0. As in the case of the first derivative, it is easy to

show using L’Hôpital’s rule that the limit at this point is

lim
x→ 1

a

g′′(x) = −a2N
2 − 1

6N
< 0, (6.23)

which shows that the function is strictly concave for all x ∈ R. This completes

the proof.

Lemma 16 can be easily extended to the function Ξ : RK → RK to

show that it is also a monotonically increasing and concave function. The

conditions for existence and uniqueness of the fixed point for such functions can

be characterized by specializing Tarski’s theorem [134] for concave functions.

The result is stated below. To the best of the knowledge of the authors, it first

appeared in [135, Theorem 3]. Since the proof is given in [135], it is skipped

here.

Theorem 10 (Fixed point for increasing concave functions). Suppose Ξ :

Rn → Rn is an increasing and strictly concave function satisfying the following

two properties:

1. Ξ(0) ≥ 0, Ξ(a) > a for some a ∈ Rn
+,

2. Ξ(b) < b for some b > a.
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Then Ξ has a unique positive fixed point.

Before deriving the main result about the existence and uniqueness of

positive solution for the set of fixed point equations (6.14), for cleaner expo-

sition we state the following intermediate result that establishes equivalence

between an energy conservation principle and a key set of conditions.

Lemma 17 (Equivalence). For ρk > 0,∀k, the following sets of conditions are

equivalent, i.e., (6.24) ⇔ (6.25)

µk
K∑
j=1

ρjλjE
[
X

2
α
j

]
P

2
α
j

ρkPcλuE
[
X

2
α
k

]
P

2
α
k

> 1, ∀k ∈ K (6.24)

K∑
k=1

λkµk > λuPc, (6.25)

where (6.25) is simply the energy conservation principle, i.e., the net energy

harvested by all the tiers should be greater than the effective energy required by

all the users.

Proof. For the proof of (6.24)⇒ (6.25), take the denominator of (6.24) to the

right hand side of inequality and multiply both sides by λk to get

λkµk

K∑
j=1

ρjλjE
[
X

2
α
j

]
P

2
α
j > ρkλkPcλuE

[
X

2
α
k

]
P

2
α
k ,∀k ∈ K.

Now add all the K inequalities, i.e., sum both sides from k = 1 to K, which

leads to (6.25) and hence completes half of the proof. For the proof of (6.24)

⇐ (6.25), multiply both sides of (6.25) by
∑K

j=1 ρjλjE
[
X

2
α
j

]
P

2
α
j to get
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K∑
k=1

λkµk

K∑
j=1

ρjλjE
[
X

2
α
j

]
P

2
α
j >

K∑
k=1

PcλuρkλkE
[
X

2
α
k

]
P

2
α
j . (6.26)

Rearranging the terms we get

K∑
k=1

λk

µk∑K
j=1 ρjλjE

[
X

2
α
j

]
P

2
α
j

PcλuρkE
[
X

2
α
k

]
P

2
α
j

− 1

 > 0. (6.27)

Since λk is arbitrary, for the above condition to always hold, we need the term

inside the bracket to be positive for all k ∈ K. This set of conditions is the

same as (6.24) and hence completes the proof.

Using Theorem 10 and Lemma 17, we now derive the main result of

this subsection.

Theorem 11. The necessary and sufficient condition for the existence of a

positive solution ρk > 0, ∀ k ∈ K for the system of fixed point equations given

by (6.14) is

K∑
k=1

λkµk > λuPc. (6.28)

Proof. For sufficiency, it is enough to show that the given condition is sufficient

for the function Ξ : RK → RK defined by (6.15) to satisfy both the properties

listed in Theorem 10. Further, it is enough to show this for each element
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function gk : RK → R of Ξ. For ρk 6= 0, the function gk, as a function of ρk

can be expressed as

gk(ρk) = 1−
(

1− κkρk
1− (κkρk)Nk+1

)
, (6.29)

where

κk =
µk
∑K

j=1 ρjλjE
[
X

2
α
j

]
P

2
α
j

ρkPcλuE
[
X

2
α
k

]
P

2
α
k

. (6.30)

Note that the function gk(ρk) < 1 for finite Nk. Now setting b, as defined in

Theorem 10, equal to 1, it is enough to find conditions under which ∃ a < b

such that gk(a) > a. Since gk(ρk) = 0 for ρk → 0, for the existence of a such

that gk(a) > a it is enough to show that g′(ρk) > 1 for ρk → 0. Furthermore,

it is easy to show that g′(ρk) = κk for ρk → 0, which leads to the condition

κk > 1 for the existence of a as defined above. This leads to the following set

of inequalities for 1 ≤ k ≤ K:

µk
∑K

j=1 ρjλjE
[
X

2
α
j

]
P

2
α
j

ρkPcλuE
[
X

2
α
k

]
P

2
α
k

> 1. (6.31)

From Lemma 17, this set of conditions is the same as (6.28) and hence proves

that (6.28) is a sufficient condition for the existence and uniqueness of the

positive solution for {ρk}.

To show that the given condition is also necessary, we construct a simple

counter example. Let K = 1 and drop all the subscripts denoting the indices

of tiers for notational simplicity. The fixed point equation for this simple setup
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is

ρ = 1−

 1− µρλ
Pcλu

1−
(
µρλ
Pcλu

)N
 = g(ρ), (6.32)

It is easy to show that g(ρ) does not have a positive fixed point when µλ <

Pcλu, which proves that the given condition (6.28) is also necessary.

The existence and uniqueness of the positive solution for the BS avail-

abilities {ρk} will play a crucial role in establishing the availability region later

in this section. The unique positive solution for {ρk} can be computed easily

using fixed-point iteration. Before concluding this section, it is important to

formalize some key ideas.

Remark 16 (Energy outage). From Theorem 11, it is clear that the total

energy harvested by the HetNet must be greater than the total energy demand

to guarantee a positive solution for the availabilities {ρk}. However, if this

condition is not met, the system may drop a certain fraction of users to ensure

that the resulting density of users λ′u is such that
∑K

k=1 λkµk > λ′uPc. The rest

of the users are said to be in outage due to energy unavailability, or in short

“energy outage”. The probability of a user being in energy outage is

Oe = 1− λ′u
λu
≥ 1−

∑K
k=1 λkµk
λuPc

, (6.33)

where the lower bound is strictly positive if
∑K

k=1 λkµk < λuPc, i.e., when

condition (6.28) is not met. However, if the condition (6.28) is met, it is in

principle possible to make Oe = 0. The exact characterization of energy outage
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will depend upon the protocol design and is out of the scope of this chapter.

In the rest of the chapter, we will assume that the condition (6.28) is met and

hence Oe = 0.

Remark 17 (Effect of battery capacity on availability). Note that the function

gk is an increasing function of Nk from which it directly follows that the avail-

ability of a particular class of BSs increases with the increase in the battery

capacity.

Remark 18 (Effect of availabilities of other tiers on ρk). From Lemma 16, it

follows that gk is an increasing function of not only ρk but also of ρj, j 6= k.

This implies that the availability of kth tier increases if the availability of one

or more of the other tiers is increased. This is consistent with the intuition

that if the availability of any tier is increased, the effective load on other tiers

decreases hence increasing their availabilities.

Definition 5 (Over-provisioning factor). As mentioned above, we will hence-

forth assume that the system is over provisioned in terms of energy harvesting,

i.e.,
∑K

k=1 λkµk > λuPc. For cleaner exposition, it is useful to define an over-

provisioning factor γ as the ratio of total energy harvested in the network and

the effective energy demand, i.e.,

γ =

∑K
k=1 λkµk
λuPc

> 1. (6.34)

So far we focused on a particular strategy, where a BS is said to be avail-

able if it is not in the 0 energy state, i.e., it has at least one unit of energy. In

186



0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

Cutoff value

Time

C
u
rr

e
n
t 
e
n
e
rg

y
 l
e
v
e
l

Figure 6.3: Illustration of how the energy level changes over time. The time
for which BS is in OFF state is shaded. The unit of time is irrelevant.

the next subsection, we develop tools to study availabilities for any general un-

coordinated strategy using stopping/hitting time analysis. Our analysis will

concretely demonstrate that the simple strategy discussed above maximizes

the BS availabilities over the space of general uncoordinated strategies. Ex-

tending these results further, we will characterize the availability region that

is achievable by the set of general uncoordinated strategies.

6.4.3 Availabilities for any General Uncoordinated Strategy

We first focus on a general set of strategies {Sk(Nkmin, Nkc)} in which

a BS toggles its state based solely on its current energy level, i.e., a kth tier BS

toggles to OFF state when its energy level reaches some level Nkmin and toggles
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back to ON state when the energy level reaches some predefined cutoff value

Nkc > Nkmin as shown in Figure 6.3. Although not required for this analysis,

it should be noted that the cutoff value Nkc can be changed by the network if

necessary on an even larger time scale than the time scale over which the BSs

are turned ON/OFF. Now note that for the proposed model, the strategies

{Sk(Nkmin, Nkc)} with energy storage capacity Nk and {Sk(0, Nkc − Nkmin)}

with energy storage capacity Nk−Nkmin, are equivalent because when the BS

is turned OFF at a non-zero energy level Nkmin in the first set of strategies,

it effectively reduces the energy storage capacity to Nk − Nkmin. Therefore,

without any loss of generality we fix Nkmin = 0 (for all tiers) and denote this

strategy by Sk(Nkc) for notational simplicity. For this strategy, we denote the

time for which a kth tier BS is in the ON state after it toggles from the OFF

state by Jk1(Nkc) and the time for which it remains in the OFF state after

toggling from the ON state by Jk2(Nkc). The cutoff value in the arguments will

be dropped for notational simplicity wherever appropriate. The cycles of ON

and OFF times go on as shown in Figure 6.3. It is worth highlighting that both

Jk1 and Jk2 are in general random variables due to the randomness involved

in both the energy availability and its utilization, e.g., Jk1 can be formally

expressed as Jk1(Nkc) = inf{t : Ek(t) = 0|Ek(0) = Nkc}, where Ek(t) denotes

the energy level of a kth tier BS at time t. For this setup, the availabilities

depend only on the means of Jk1 and Jk2 as shown in the following Lemma.

Lemma 18 (Availability). The availability of a kth tier BS for any operational
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strategy can be expressed as

ρk =
E[Jk1 ]

E[Jk1 ] + E[Jk2 ]
=

1

1 +
E[Jk2

]

E[Jk1
]

, (6.35)

where E[Jk1 ] is the mean time a BS spends in the ON state and E[Jk2 ] is the

mean time it spends in the OFF state.

Proof. For a particular realization, let {J (i)
k1
} and {J (i)

k2
} be the sequences of

ON and OFF times, respectively, with i being the index of the ON-OFF cycle.

The availability can now be expressed as the fraction of time a BS spends in

the ON state, which leads to

ρk = lim
n→∞

∑n
i=1 J

(i)
k1∑n

i=1 J
(i)
k1

+
∑n

i=1 J
(i)
k2

. (6.36)

The proof follows by dividing both the numerator and the denominator by n

and invoking the law of large numbers.

To set up a fixed point equation similar to (6.14) for the strategy

Sk(Nkc), we need closed form expressions for the mean ON time E[Jk1 ] and the

mean OFF time E[Jk2 ]. Note that the OFF time for Sk(Nkc) is simply the time

required to harvest Nkc units of energy, which is the sum of Nkc exponentially

distributed random variables, each with mean 1/µk. Therefore,

E[Jk2 ] =
Nkc

µk
⇒ ρk =

1

1 + Nkc
µkE[Jk1

]

. (6.37)
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To derive E[Jk1 ], we first define the generator matrix for the birth-death process

corresponding to a kth tier BS as Ak =
−µk µk 0 · · · 0 0
νk −µk − νk µk · · · 0 0
0 νk −µk − νk · · · 0 0
...

...
. . .

0 0 0 · · · νk −νk

 , (6.38)

where the states are ordered in the ascending order of the energy levels, i.e.,

the first column corresponds to the energy level 0. To complete the derivation,

we need the following technical result. Please refer to Proposition 5.7.2 of [136]

for a more general version of this result and its proof.

Lemma 19 (Mean hitting time). If the embedded discrete Markov chain of

the CTMC is irreducible then the mean time to hit energy level 0 (state 1)

starting from energy level i (state i+ 1) is

E[Jk1(i)] =
(
(−Bk)

−1
1
)

(i), (6.39)

where 1 is a column vector of all 1s, and Bk is a (Nk−1)×(Nk−1) sub-matrix

of Ak obtained by deleting first row and column of Ak.

For Ak given by (6.38), we can derive a closed form expression for each

element of (−Bk)
−1 after some algebraic manipulations. The (i, j)th element

can be expressed as

(−Bk)
−1 (i, j) =

1

νjk

min(i,j)∑
n=1

µj−nk νn−1
k . (6.40)
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Now substituting (6.40) back in (6.39) gives us the mean ON time for any

strategy Sk(Nkc), which when substituted in (6.37) gives a fixed point equation

in {ρk} similar to (6.14), as illustrated below for the two policies of interest.

6.4.3.1 Policy 1 (Sk(1))

In this policy, each BS serves users until it depletes all its energy after

which it toggles to OFF state. It toggles back to ON state after it has harvested

one unit of energy. Using (6.39) and (6.40), the mean ON time E[Jk1] for this

policy can be expressed as

E[Jk1 ] =
1

νk

1−
(
µk
νk

)Nk
1−

(
µk
νk

) , (6.41)

which when substituted into (6.37) leads to

ρk = 1−
1− µk

νk

1−
(
µk
νk

)Nk+1
, (6.42)

which is the same fixed point equation as (6.14). This establishes an equiva-

lence between this policy and the one studied in the previous subsection. In

particular, this policy is an achievable strategy to achieve the same availabili-

ties as the ones possible with the strategy studied in the previous subsection.

6.4.3.2 Policy 2 (Sk(Nk))

As in the above policy, each BS serves users until it depletes all its

energy after which it toggles to OFF state. Under this policy, the BS waits

in the OFF state until it harvests Nk units of energy, i.e., its energy storage
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module is completely charged. Using (6.39) and (6.40), E[Jk1 ] can be expressed

as

E[Jk1 ] =
1

µk − νk
µk
νk

1−
(
µk
νk

)Nk
1−

(
µk
νk

) − Nk

µk − νk
, (6.43)

which can be substituted in (6.37) to derive the fixed point equation for this

policy.

While policy 1 will be of fundamental importance in establishing the

availability region, we will also consider policy 2 at several places to highlight

key points. We now prove the following theorem, which establishes a funda-

mental upper limit on the availabilities of various types of BSs that cannot be

surpassed by any uncoordinated strategy. Please note that although we have

discussed only “energy-based” uncoordinated strategies so far, the general set

of uncoordinated strategies also additionally includes timer-based, and the

combination of energy and timer-based strategies. This is taken into account

in the proof of the following theorem.

Theorem 12. For a given K tier network, the availabilities of all the classes

of BSs are jointly maximized over the space of general uncoordinated strategies

if each tier follows strategy Sk(1). The availabilities are strictly lower if any

one or more tiers follow Sk(i), i > 1, with a non-zero probability.

Proof. From (6.37), note that the availability for a kth tier BS is maximized

if E[Jk1(Nkc)]/Nkc is maximized. Using (6.39) and (6.40), it is straightforward
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to show that

arg max
1≤i≤Nk

E[Jk1(i)]

i
= 1. (6.44)

The proof now follows from the fact that if any tier follows strategy Sk(i) (i >

1) with a non-zero probability, its availability will be strictly lower than that

of Sk(1), which increases the effective load on other tiers and hence decreases

their availabilities, as discussed in Remark 18. Therefore, to jointly maximize

the availabilities of all the tiers, each tier has to follow Sk(1).

Now note that any strategy that is fully or partly based on a timer can

be thought of as an arbitrary combination of Sk(i), where i > 1 with some

non-zero probability. Hence the availabilities for such strategies are strictly

lower than Sk(1).

Using this result we now characterize the availability region for the set

of general uncoordinated strategies.

6.4.4 Availability Region

We begin this subsection by formally defining the availability region as

follows.

Definition 6 (Availability region). Let R(UC) ⊂ RK be the set of availabilities

(ρ1, ρ2, . . . , ρK) ∈ RK that are achievable by a given uncoordinated strategy

S(UC). The availability region is now defined as

R = ∪S(UC)R(UC), (6.45)
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where the union is over all possible uncoordinated strategies.

From Theorem 12 we know that the availabilities of all the tiers are

jointly maximized if they all follow strategy Sk(1). For notational ease, we

define these maximum availabilities by ρmax = (ρmax
1 , ρmax

2 . . . ρmax
K ). This pro-

vides a trivial upper bound on the availability region as follows

R ⊆ {ρ ∈ RK : ρk ≤ ρmax
k ,∀ k ∈ K}, (6.46)

which is simply an orthotope in RK . Our goal now is to characterize the exact

availability region as a function of key system parameters. As a by product,

we will show that the upper bound given by (6.46) is rather loose. For cleaner

exposition, we will refer to Figure 6.4, which depicts the exact availability

region for a two-tier setup along with the bound given by (6.46). Before stating

the main result, denote by ρ∗k({ρj} \ ρk) the maximum availability achievable

for the kth tier BSs, given the availabilities of the other K−1 tiers. It is clearly

a function of (ρ1, . . . ρk−1, ρk+1, . . . , ρK). Following the notation introduced in

(6.15), ρ∗k({ρj}\ρk) (denoted by ρ∗k for notational simplicity) can be expressed

as

ρ∗k = gk(ρ1, . . . ρ
∗
k, . . . , ρK), (6.47)

where ρ∗k is the solution to the fixed point equation given the availabilities of

the other K − 1 tiers. Recall that while defining ρ∗k in terms of gk, we used

Theorem 12, where we proved that strategy Sk(1) maximizes availability for

any given tier and also leads to the same set of fixed point equations as given
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by (6.15). In Figure 6.4, the solid line denotes ρ∗2(ρ1), and the dotted line de-

notes ρ∗1(ρ2). We remark on the achievability of the availabilities corresponding

to these lines for ρk ≤ ρmax
k , ∀k ∈ K below.

Remark 19 (Achievability of ρ∗1(ρ2) and ρ∗1(ρ2)). To show that for ρ1 ≤ ρmax
1 ,

all the points on ρ∗2(ρ1) are achievable, consider point G = (ρG1 , ρ
G
2 ) in Fig-

ure 6.4. Given ρG2 , the maximum possible availability for first tier corresponds

to point H on ρ∗1(ρG2 ), which further corresponds to strategy S(1). Clearly

ρG1 ≤ ρ∗1(ρG2 ), and hence achievable by some uncoordinated strategy. One op-

tion is to time share between S(1) and a fixed timer that keeps a BS OFF

despite having energy to serve users. The timer can be appropriately adjusted

such that the effective availability is ρG1 . Likewise, all the points on ρ∗1(ρ2) are

also achievable. Clearly, this construction easily extends to general K tiers.

Using these insights, we now derive the exact availability region for the

set of uncoordinated strategies in the following theorem.

Theorem 13 (Availability region). The availability region for the set of gen-

eral uncoordinated strategies is

R = {ρ ∈ RK : ρk ≤ ρ∗k({ρj} \ ρk),∀ k ∈ K}. (6.48)

Proof. To show that R defined by (6.48) is in fact the availability region, it is

enough to show that ρ ∈ R is achievable and ρ /∈ R is not achievable. For ease

of exposition, we refer to Figure 6.4 and prove for K = 2, with the understand-

ing that all the arguments trivially extend to general K. To show that ρ ∈ R
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Figure 6.4: Availability region for a two-tier HetNet. The upper bound and the
exact availability regions are respectively highlighted in light and dark shades.
Setup: α = 4, K = 2, N1 = 10, N2 = 8, γ = 1.1, µ1 = 2, µ2 = 1, λ2 = 10λ1,
m1 = m2, σ1 = σ2.

is achievable, consider point E in Figure 6.4. This point is achievable by time

sharing between strategies that achieve availabilities corresponding either to

points A and B or C and D, which are all achievable as argued in Remark 19.

This clearly shows that there are numerous different ways with which ρ ∈ R

is achievable. To show that the point ρ /∈ R is not achievable, consider point

F = (ρF1 , ρ
F
2 ) in Figure 6.4. Note that given ρF1 , the maximum availability

possible for second tier is constrained by the corresponding value ρ∗2(ρF1 ) on

the solid curve. Since ρF2 > ρ∗2(ρF1 ), it contradicts the fact that ρ∗2(ρF1 ) is the

maximum possible availability for second tier given ρF1 . Hence point F is not

achievable.
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Remark 20 (Effect of constraining the set of strategies on R). Recall that ρ∗k

given by (6.47) and used in defining the availability region R corresponds to

fixed point solution for strategy S(1). In principle, it is possible to restrict one

of tiers to follow a particular strategy by defining ρ∗k as the fixed point solution

for that strategy. For instance, we could define ρ∗k as a solution to the fixed

point equation corresponding to strategy Sk(Nk). Clearly, all the points ρ ∈ R

will not be achievable in this setup. For a two tier setup, we plot the avail-

ability region for this case in Figure 6.5, along with the availability region R

defined by Theorem 13. Note that as expected the set of points achievable under

this constrained setup is strictly contained in the availability region defined by

Theorem 13.

We conclude this subsection with two remarks about the “optimality”

of the availability region.

Remark 21 (Higher availability is not always better). It is not always optimal

in terms of certain performance metrics to operate the network in the regime

corresponding to the maximum availabilities. We will validate this in Sec-

tion 6.5 in terms of the downlink rate. Interestingly, a similar idea, although

applicable at a much smaller time scale, of intentionally making a macrocell

“unavailable” on certain sub-frames can be used to improve downlink data rate

by offloading more users to the small cells. This concept is called almost blank

sub-frames (ABS) and was introduced as a part of enhanced inter-cell inter-

ference coordination (eICIC) in 3GPP LTE release 10 [137]. While this is
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Figure 6.5: Availability region for a two-tier HetNet is denoted by lightly
shaded region. The availability region when one of the tiers is constrained to
use Sk(Nk) is denoted by the dark shade. Setup: α = 4, K = 2, N1 = 20, N2 =
15, γ = 1.1, µ1 = 15, µ2 = 5, λ2 = 10λ1, m1 = m2, σ1 = σ2.

an interesting analogy, the two concepts are not exactly the same because in

addition to the differences in the time scales, ABS additionally assumes coor-

dination across BSs.

Remark 22 (Notion of optimality). The performance of a HetNet with energy

harvesting is the same as the one with a reliable energy source if for the given

performance metric, the optimal availabilities ρ̂ lie in the availability region,

i.e., ρ̂ ∈ R. For example, if ρ̂ corresponds to point E in Figure 6.4, the HetNet

despite having unreliable energy source will achieve “optimal” performance.

On the other hand, if ρ̂ is, say, point F in Figure 6.4, there will be some

performance loss due to unreliability in energy availability.
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We now study the coverage probability and downlink rate in the fol-

lowing subsection, which will be useful in the next section to demonstrate the

above ideas about optimality.

6.4.5 Coverage Probability and Downlink Rate

We now study the effect of BS availabilities {ρk} on the downlink per-

formance at small time scale. As described in Section 6.3, the availabilities

change on a much longer time scale and hence the operational states of the BSs

can be considered static over small time scale. Therefore, for this discussion

it is enough to consider the set of available BSs Φ(a). For downlink analysis,

we focus on a typical user assumed to be located at the origin, which is made

possible by Skivnyak’s theorem [69]. Assuming full-buffer model for inter-cell

interference [5], i.e., all the interfering BSs in Φ(a) are always active, the SIR

at a typical user when it connects to a BS located at x ∈ Φ
(a)
k is

SIR(x) =
Pkh

(0)
kxX

(0)
kx ‖x‖−α∑

j∈K
∑

z∈Φ
(a)
j \{x}

Pjh
(0)
jz X

(0)
jz ‖z‖−α

. (6.49)

Using tools developed in Chapter 5, Theorem 1 of [49] can be easily extended

to derive the coverage probability under the general cell selection model of

this chapter, which additionally incorporates the effect of shadowing. Since

the extension is straightforward, the proof is skipped.

Theorem 14 (Coverage). The coverage probability is

Pc = P(SIR(x∗(0)) > β) =
1

1 + F(β, α)
, (6.50)
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where

F(β, α) =

(
2β

α− 2

)
2F1

[
1, 1− 2

α
, 2− 2

α
,−β

]
, (6.51)

and 2F1[a, b, c, z] = Γ(c)
Γ(b)Γ(c−b)

∫ 1

0
tb−1(1−t)c−b−1

(1−tz)a dt denotes Gauss hypergeometric

function.

Clearly, the coverage probability for interference-limited HetNets is in-

dependent of the densities of the available BSs, and hence of the availabilities

{ρk}. This validates Remark 14. However, it is not necessarily so in the case

of downlink rate distribution, which we discuss next. Assuming equal resource

allocation across all the users served by a BS, the complimentary cumulative

distribution function (CCDF) of rate R (in bps/Hz) achieved by a typical user,

termed rate coverage Rc, is calculated in Theorem 9 of Chapter 5 for the same

cell selection model as this chapter. Assuming the typical user connects to a

kth tier BS, R can be expressed as R = 1
Ψk

log(1 + SIR(x∗(0)), where Ψk is the

number of users served by the kth tier BS to which the typical user is con-

nected. The approach of Chapter 5 includes approximating the distribution

of Ψk and assuming it to be independent of SIR(x∗(0)) to derive an accurate

approximation of R. With two minor modifications, i.e., the density of kth tier

active BSs is ρkλk, and the effective density of active users is Pcλu, Theorem 9

of Chapter 5 can be easily extended to the current setup. The generalized

result is given in the following theorem. For proof and other related details,

please refer to Chapter 5. This result will be useful in demonstrating the
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fact that the optimal downlink performance may not always correspond to the

regime of maximum availabilities.

Theorem 15 (Rate CCDF). The CCDF of downlink rate R (in bps/Hz) or

rate coverage Rc is

P(R > T) =
∑
n≥0

1

1 + F (βn+1, α)

K∑
k=1

ρkλkE
[
X

2
α
k

]
P

2
α
k∑

j∈K
ρjλjE

[
X

2
α
j

]
P

2
α
j

× 3.53.5

n!

Γ(n+ 4.5)

Γ(3.5)

(
PcλuPk
ρkλk

)n(
3.5 +

PcλuPk
ρkλk

)−(n+4.5)

where βn+1 = 2T(n+1) − 1 and

Pk =
ρkλkE

[
X

2
α
k

]
P

2
α
k∑

j∈K ρjλjE
[
X

2
α
j

]
P

2
α
j

. (6.52)

Remark 23 (Invariance to shadowing distribution). From Theorem 15, we

note that the rate coverage is invariant to the shadowing distribution when

E
[
X

2
α
j

]
= E

[
X

2
α
k

]
, for all j, k ∈ K. This is similar to the observations made

in Remark 15.

6.5 Numerical Results and Discussion

Since most of the analytical results discussed in this chapter are self-

explanatory, we will focus only on the most important trends and insights in

this section. For conciseness, we assume lognormal shadowing for each tier

with the same mean m dB and standard deviation σ dB. Recall that both the

energy utilization and the rate distribution results are invariant to shadowing
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under this assumption, as discussed in Remarks 15 and 23. We begin by

discussing the effect of battery capacity on the availability region.

6.5.1 Effect of Battery Capacity on Availability Region

We consider a two tier HetNet and plot its availability region for various

values of the capacity of the energy storage module, i.e., battery capacity, in

the first subplot of Fig 6.6. For ease of exposition, we assume that the storage

capacities of the BSs of the two tiers are the same. As expected, the availability

region R increases with the increase in battery capacity. Interestingly, it is

however not possible to achieve all the points ρ in the square [0, 1] × [0, 1]

even by increasing the battery capacity infinitely. The maximum availability

region is a function of over-provisioning factor γ, which is set to 1.1 for this

result. Additionally, we note that the maximum availabilities for both the tiers

approach unity even at modest battery levels. We repeat the same experiment

for the case when one of the tiers is constrained to use the strategy Sk(N) and

present the results in the second subplot of Figure 6.6. Recall that this case

was discussed in Remark 20. We observe that for the same battery capacity

N , the achievable region is smaller in this case compared to Figure 6.6, which

is consistent with the observations made in Section 6.4. The difference is

especially prominent for smaller values of battery capacity N .
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Figure 6.6: (first) Availabilities region for various values of energy storage
capacity N , where N1 = N2 = N . (second) One of the tiers constrained to
use strategy Sk(N). Setup: α = 4, K = 2, γ = 1.1, P = [1, 0.1], µ1 = 10, µ2 =
3, λ2 = 10λ1.
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Figure 6.7: (first) Availabilities region for various values of γ. (second) One
of the tiers is constrained to use strategy Sk(N). Setup: α = 4, K = 2, N1 =
20, N2 = 5, µ1 = 10, µ2 = 3, λ2 = 10λ1.
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6.5.2 Effect of Over-Provisioning Factor on Availability Region

We now study the effect of the over-provisioning factor on the availabil-

ity region in the first subplot of Figure 6.7. Recall that the over-provisioning

factor γ is the ratio of the net energy harvested per unit area per unit time

and the net energy utilized per unit area per unit time. The first and foremost

observation is that unlike increasing battery capacity, the availability region

expands by increasing γ and will cover the complete square [0, 1] × [0, 1] for

sufficiently large γ. Also note that the beyond a certain value of γ, the avail-

ability of a tier may be non-zero even if the availabilities of the other tiers are

zero. This is the case when that tier harvests enough energy on its own to

serve all the load offered to the network, i.e., λkµk > Pcλu. As in the previous

subsection, we now repeat this experiment under the constraint that one of

the tiers follows strategy Sk(Nk) and present the results in the second subplot

of Figure 6.7. As expected, the availability region is considerably smaller in

this case.

6.5.3 Rate coverage

Using rate coverage, given by Theorem 15, we demonstrate that it may

not always be optimal to operate the network in the regime corresponding

to maximum availabilities. We plot rate coverage as a function of (ρ1, ρ2)

for two different setups in Figure 6.8. In both the cases, we note that it is

strictly suboptimal to operate at the point (ρ1, ρ2) = (1, 1). Furthermore, as

the second tier density is increased, it is optimal to keep first tier BSs OFF
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more often. As expected, the rate coverage also increases with the increase of

second tier density. This example additionally motivates the need for the exact

characterization of ρ̂ for various metrics of interest, which forms a concrete line

of future work. Once the optimal ρ̂ for a given metric is known, the system

designers can, in principle, design the energy harvesting modules such that

ρ̂ ∈ R. In such a case, the HetNet with energy harvesting will have the same

performance as the HetNet with reliable energy sources.

6.6 Summary

In this chapter, we have developed a comprehensive framework to study

self-powered HetNets, where each BS is powered solely by its energy harvest-

ing module. Developing novel tools with foundations in random walk theory,

fixed point analysis and stochastic geometry, we quantified the uncertainty

in BS availability due to the finite battery capacity and inherent randomness

in energy harvesting. We further characterized the availability region for a

set of general uncoordinated BS operational strategies. This characterizes the

regimes under which the self-powered HetNets have the same performance as

the ones with reliable energy sources.
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Chapter 7

Conclusion

7.1 Summary

Opportunistic capacity-driven deployment of small cells is recognized

as a key solution to keep up with the increasing capacity demand from cellular

networks. This has led to a paradigm shift in cellular deployments where the

traditional high power tower-mounted macrocellular BSs are now joined by var-

ious low power nodes such as microcells, picocells, femtocells and distributed

antennas. In addition to increasing the disparity in the BS capabilities, such

as transmit power and backhaul capacity, this has also led to the increasing

uncertainty in the BS locations due to the unplanned deployment of small

cells. An immediate effect of the increasing heterogeneity and uncertainty on

the study of cellular networks is that it has limited the applicability of classi-

cal cellular models based mainly on the regularity assumption of BS locations,

such as deterministic grid-based models and Wyner model, to HetNets. In this

dissertation, we proposed a new and more appealing way of modeling HetNets

by using random spatial models, where the locations of the BSs are assumed to

form a realization of a spatial point process. In comparison to the conventional

models, this approach is especially attractive in the context of HetNets due to

its: (i) realism: to capture the inherent uncertainty in deployments involving
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both operator and user deployed BSs, (ii) scalability: to model ever-increasing

heterogeneity in the infrastructure elements and, (iii) tractability: to gain sys-

tem design insights using tools from stochastic geometry and spatial statistics.

We now summarize the key contributions of this dissertation.

In Chapter 2, we proposed a baseline model for downlink HetNets con-

sisting of K tiers of BSs, which may differ in terms of transmit power, sup-

ported data rate and deployment density. The BS locations of each tier are

sampled from an independent homogeneous PPP. Using fairly general channel

and cell selection models, we derived an expression for the probability of cover-

age (equivalently outage) over the entire network under both open and closed

access, which assumes a strikingly simple closed-form when the resulting SINR

is greater than 1 and the network is interference limited. We also derived

simple expressions for the average rate achieved by a typical mobile and the

average load on each tier of BSs. Our results demonstrate that interference-

limited HetNets are scale-invariant in terms of coverage probability, i.e., adding

more tiers and/or BSs neither increases nor decreases the coverage probability

when all the tiers have the same target SINR.

In Chapter 3, we incorporated a flexible and accurate notion of BS

load by introducing a new idea of conditionally thinning the interference field,

conditional on the connection of a typical mobile to its serving BS. The re-

sulting framework is capable of capturing different levels of load on different

tiers, arising mainly from the differences in the coverage footprints. Assuming

a mobile user connects to the strongest BS, we derived exact expression for
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the fractional moment for interference, which was then used to derive a simple

expression for downlink coverage probability. This analysis leads to following

key insights: (i) fully loaded models are extremely pessimistic in terms of cov-

erage, and (ii) adding lightly loaded small cells to the macrocellular network

always increases coverage probability. In Apendix B, the same idea of condi-

tional thinning was used to study non-uniform user distributions, especially

when the users are more likely to lie closer to the BSs.

In Chapter 4, we generalized the baseline model of Chapter 2 to study

multi-antenna HetNets, where BSs across tiers may additionally differ in terms

of the number of transmit antennas, transmission strategy, and number of

users served. Using novel tools from stochastic orders, we developed a new

framework to compare different transmission techniques, such as SDMA, SU-

BF and baseline SISO transmission, in terms of the downlink coverage and rate

per user for any given distribution of BS locations. A direct consequence of this

analysis is that for a given total number of transmit antennas, it is preferable

to spread them across many single-antenna BSs vs. fewer multi-antenna BSs.

While this approach is quite conclusive for coverage and rate per user, it does

not account for the fact that certain transmission techniques, such as SDMA,

serve more users and may provide higher sum-rate. To incorporate this fact in

our analysis, we derived an upper bound on the coverage probability assuming

an independent PPP model for BS locations and used it to compare different

transmission techniques in terms of area spectral efficiency.

Recall that the baseline HetNet model of Chapter 2 and its extensions
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in Chapters 3 and 4 do not differentiate between the long-term shadowing

and small-scale fading effects. The channel randomness was captured using a

single random variable and cell selection was based on the maximum instanta-

neous received signal strength. In Chapter 5, we addressed this shortcoming of

the baseline HetNet model and derived the distribution of the downlink rate

achievable at a typical user under a generalized cell-selection model, where

shadowing, following any general distribution, affects cell selection while fad-

ing does not. This generalization is a simple application of displacement the-

orem for PPPs. We proposed an equivalent interpretation of this general cell

selection model and showed that the effect of shadowing can be equivalently

studied by appropriately scaling transmit powers. Using this equivalent inter-

pretation, we studied the effect of shadowing on load balancing, and showed

that in certain regimes shadowing naturally balances load across various tiers

and hence reduces the need for artificial cell selection bias.

Unlike all the previous chapters, Chapter 6 deals with a slightly fu-

turistic HetNet scenario where each BS is powered solely by its own energy

harvesting module. This possibility is becoming realistic due to the increasing

popularity of low power nodes, which are more likely to be powered solely by

the energy harvesting modules, such as solar panels, compared to the high-

power macrocells of yesterday. We extend the K-tier baseline HetNet model to

additionally include differences across tiers in terms of the energy harvesting

rate and energy storage capacity. Developing novel tools with foundations in

random walk theory, fixed point analysis and stochastic geometry, we quanti-
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fied the uncertainty in BS availability due to the finite battery capacity and

inherent randomness in energy harvesting. We further characterized the avail-

ability region for a set of general uncoordinated BS operational strategies.

This characterizes the regimes under which the self-powered HetNets have the

same performance as the ones with reliable energy sources.

7.2 Future Directions

The models proposed in this paper have already been generalized in var-

ious forms and have found numerous applications in diverse HetNet scenarios.

Please refer to [87] for a detailed survey. Here we propose two important

extensions, which are relatively less investigated in the literature. First is to

model the inter point interactions between the locations of various types of BSs

and develop more realistic spatial models using tools from spatial statistics.

Second is to develop a techno-economic model to explore possible interdepen-

dencies between network deployment cost and the HetNet performance. We

now briefly discuss these future research directions below.

7.2.1 More Realistic Spatial Models for BS locations

With the exception of Chapter 4 where the spatial model was irrelevant,

this dissertation assumes that each BS is deployed independently of the rest of

the network. While this assumption can be justified for small cells, especially

for user deployed femtocells, it is questionable for other tiers such as macro-

cells, where the BS locations are clearly dependent. In order to model the
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Figure 7.1: (left) Point pattern x. (right) Realization of a Strauss Hardcore
process fitted to x.

performance of HetNets accurately, it is important to first characterize these

inter point interactions. One possible option is to use Gibbs models [138], which

we briefly discuss here. To fix the key ideas, we consider two point pattens

x and y (shown in Figs. 7.1 and 7.2) which are subsets of the macrocellular

deployments of two of the U.S.’ 10 largest metropolitan areas. Point pattern

x is from a sprawling, landlocked city, while y is from a coastal city.

To describe Gibbs models, we consider a point pattern z confined in a

bounded window W, where z = {z1, z2, . . . , zn(z)} and n(z) = |z|. Although

Gibbs models can be used to model general inter point interaction, we focus

our attention on a simple “pairwise interaction model”, which is shown to

be sufficient to model both x and y in [82]. For this model, the probability
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Figure 7.2: (left) Point pattern y. (right) Realization of a Geyer Saturation
Process fitted to y.

density f(z) can be expressed in the product form as follows:

f(z) = α

n(z)∏
i=1

φ(zi)

[∏
i<j

ψ(zi, zj)

]
, (7.1)

where α is the normalizing factor to ensure the probability density integrates

to unity, φ(z) is the function modeling the “first order trends” and ψ(zi, zj)

are the functions modeling the pairwise interaction. Two important special

cases are: the Strauss process [139], which is useful in modeling inhibition,

and its generalization the Geyer saturation process [140], which models both

inhibition and clustering. The Strauss process is defined by taking φ(zi) = β

and defining ψ(zi, zj) as

ψ(zi, zj) =

{
1, ‖zi − zj‖ > r
γ, ‖zi − zj‖ ≤ r

. (7.2)
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The probability density function is f(z) = αβn(z)γs(z), where s(z) is the num-

ber of distinct pairs of points less than an interaction radius r units apart.

Clearly γ ≤ 1 models inhibition. However, this probability density is not

integrable for γ > 1 and hence cannot be used to model clustering [141]. Nev-

ertheless, this can be overcome by including a saturation limit in the exponent

of γ to obtain the following density function: f(z) = αβn(z)γmin(s(z),t). This is

termed as the Geyer saturation process. It reduces to a PPP for t = 0 and a

Strauss process for t → ∞. In [82], we have shown that the point patten x

being inhibitive can be accurately modeled using Strauss process and y being

clustered can be modeled using Geyer saturation process. The realizations of

the fitted processes along with the original point patterns are shown in Figs. 7.1

and 7.2. Geyer saturation process was also used recently to model the spa-

tial characteristics of an outdoor Wi-Fi deployment maintained by Google in

Mountain View, CA [142].

Continuing on the similar lines, it is important to model the inter tier

interaction, e.g., by using multi class Gibbs processes, and develop new met-

rics, such as the Voronoi cell area distribution proposed in [82] to validate the

proposed models. It is also important to study the correlation of BS deploy-

ments with publicly available data, such as the population density and the

road networks, to refine the models by incorporating these “covariates”. The

eventual goal is to identify a set of point processes that would model a variety

of cities with different topologies. It would circumvent the need of knowing

the actual BS locations for accurate performance analysis. Another promising
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class of point processes useful for this purpose is that of determinantal point

processes, which have an additional advantage of being tractable [143].

7.2.2 Techno-Economic Model for Cost Optimal Deployment

This dissertation and almost all its extensions so far have focused on

the radio part of the HetNets and have ignored the economic factors, such as

infrastructure cost, that are instrumental in driving the future deployments. A

concrete future direction of work is to develop a techno-economic model that

will allow us to study the interplay between the performance metrics, such

as coverage probability, and the network deployment cost. While the system

performance has already been modeled in this dissertation, we now propose a

method to model the network deployment cost based on the prior work done

in the context of wired networks [144].

To model the deployment cost, we first incorporate a notion of backbone

network by including a tier of “concentrator” nodes in the K tier HetNet

model. We assume these concentrator nodes form an independent PPP Φ0

with density λ0. For simplicity, assume that each BS is connected to its nearest

concentrator node. It should be noted that in reality there would be multiple

“layers” of contractor nodes that can be easily incorporated in this framework.

For each BS class, we consider two components of cost required for deploying

an extra BS. First component is the fixed equipment cost Ci, which models the

cost of antennas, RF hardware, towers and manual labor. Second component is

a function of the distance of the BS from its nearest connector point. Denoting
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the distance of an ith tier BS from its nearest connector point as ‖yi‖, we model

this variable component of the cost as ai‖yi‖bi , where ai and bi are non-negative

constants modeling the type and quality of fibers used. Using tools from Palm

calculus [133], especially Neveu’s exchange formula, we can derive the average

cost of deploying all the BSs that are connected to a typical concentrator point

as

X̄ =
K∑
i=1

λi
λ0

[
Ci + ai

Γ( bi
2

+ 1)

(πλ0)bi/2

]
. (7.3)

Interestingly, this deployment cost is a linear function of the densities of var-

ious classes of BSs and together with the closed form expression of coverage

probability derived in Chapter 2 provides a simple framework to pose tractable

and meaningful optimization problems.

Building upon these ideas, a future direction of work is to develop a

complete optimization framework to find conditions that will lead to coverage

and/or cost optimal deployments given certain practical constraints on the

availability of network resources, such as available spectrum.
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Appendix A

Appendix to Chapter 2: Generalization to

βi ≥ 0

In Chapter 2, all the results were derived under the assumption that

the SINR target βi > 1 for all the tiers. While these results were numerically

shown to be accurate down to much lower target-SINRs despite this assump-

tion, for completeness we relax this assumption and derive expressions for

both the coverage probability and the ergodic rate as a function of general βi.

Since these generalized expressions involve complex integrals, for the ease of

exposition they are treated separately from the main body of the chapter.

A.1 Coverage Probability

We first provide the generalized expression for the coverage probability

of a typical user which will directly lead to the ergodic rate expression in the

next section.

Theorem 16. The coverage probability of a typical mobile user is

Pc({λi}, {βi}, {Pi}) =
2πΓ(1 + 2

α
)

α

K∑
m=1

λm(Pmδm)1+ 2
α

·
∞∫

−∞

∞∫
0

L
y
I(j2πω)

y1+2/α

ej2πωy(1−δ−1
m ) − ej2πωy(κ−1−δ−1

m )

j2πω
dydω.
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In the above expression δi = 1+βi
βi

, κ = max δi and

Lu
I (s) = e−π

∑K
m=1 λm(sPm)

2
α Γ(1+ 2

α
)[Γ(1− 2

α
)+2/αΓ(− 2

α
, su
δm

)]. (A.1)

Proof. Since the BSs are distributed as a stationary process, we can consider

a typical mobile at the origin. The coverage probability of a typical mobile

user at the origin is

1− E

[
K∏
i=1

1− 1

(
Mi

I −Mi

> βi

)]
,

where

Mi = Pi max
x∈Φi
{hx‖x‖−α},

and I is the total aggregate interference at the origin given by

I =
K∑
i=1

∑
x∈Φi

Pihx‖x‖−α.

By basic algebra, the coverage probability equals

Pc({λi}, {βi}, {Pi}) = P(max
i

(δiMi) > I). (A.2)

Let

Lu
I (s) = E[e−sI1(max

i
(δiMi) < u)].

It can be reduced to (A.1) using [145, Theorem 1]. Differentiating Lu
I (s), we

obtain

∂Ly
I(s)

∂y

∣∣∣
u

=
Lu
I (s)2πΓ(1 + 2

α
)

αu1+2/α

K∑
m=1

λm(Pmδm)1+ 2
α e−

su
δm .
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Let f(x, y) denote the joint probability density of I and max(δiMi). The

coverage probability equals

Pc =

∫ ∞
0

∫ ∞
0

f(x, y)1

(
y > x >

y

max(δi)

)
dxdy.

Let κ = max(δi). Using Parsevals theorem1, we obtain

Pc =

∫ ∞
0

∫ ∞
−∞

f̂(ω, y)
ej2πωy − ej2πωy/κ

j2πω
dωdy, (A.3)

where f̂(ω, y) denotes the Fourier transform of f(x, y) with respect to the x

variable. We also have

∂Lu
I (s)

∂u
=

∫ ∞
x=0

f(x, y)e−j2πωxdx = f̂(ω, y).

Interchanging the integrals in (A.3) and using the above equation, we obtain

the result.

A.2 Ergodic Rate

In this section, we focus on the study of the average communication rate

achievable by a typical mobile user in the K-tier HCN. We assume that the

capacity achieving codes are used and hence the Shannon’s capacity formula,

R = log

(
1 + max

x∈∪iΦi
SIR(x)

)
bps/Hz, is applicable. It is worth noting here

that the coverage probability expression derived in Theorem 16 completely

characterizes the complementary cumulative distribution function (CCDF) of

1This requires verifying that the integrand is integrable, which we do not provide here.
The technique for verifying the integrability is common and can be found in [73].
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max
x∈∪iΦi

SIR(x) and hence holds a key to the derivation of the ergodic rate. Recall

that the coverage probability result derived in Chapter 2 does not completely

characterize the SIR distribution and is hence not sufficient to derive the er-

godic rate. Using coverage probability result derived in Theorem 16, we now

derive the Ergodic rate E[R].

Theorem 17. The ergodic rate achievable by a typical mobile in a K-tier

HCN is given by:

E[R] =

∞∫
0

Pc{{λi}, 2y − 1, {Pi}}dy. (A.4)

Pc{{λi}, 2y−1, {Pi}} is the complex integral expression for coverage probability

derived in Theorem 16 by fixing βi = 2y − 1 ∀ i.

Proof. Let X be the random variable denoting max
x∈∪iΦi

SIR(x) and R be the

random variable denoting instantaneous rate log(1 + X) in bps/Hz. Since R

is a positive random variable, its expected value can be evaluated as:

E[R] =

∫ ∞
0

P[R ≥ y]dy =

∫ ∞
0

P[X ≥ 2y − 1]dy

=

∫ ∞
0

Pc{{λi}, 2y − 1, {Pi}}dy, (A.5)

which completes the proof.
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Appendix B

Appendix to Chapter 3: Modeling

Non-Uniform User Distribution

In this appendix, we propose a new tractable method of sampling users

by conditionally thinning the BS point process and show that the result-

ing framework can be used as a tractable generative model to study current

capacity-centric deployments, where the users are more likely to lie closer to

the BSs. Since the overall technical idea of conditional thinning is the same

as Chapter 3, we do not include this contribution as a separate chapter in the

main body of the dissertation.

B.1 Related Work and Motivation

As discussed in Chapter 2, a promising new way to model cellular net-

works is by using random spatial models, where the BS locations are assumed

to form a realization of some spatial point process, typically the Poisson Point

Process (PPP). Modeling the user locations as an independent PPP, the down-

link analysis is performed at a typical user assumed to be located at the origin.

Owing to its tractability, this model leads to simple closed form expressions for

key metrics such as coverage and average rate over the entire network [1,5,51].
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Although it provides a way to study average statistics for the uniform user

distribution, it does not provide any handle on studying deployment scenar-

ios involving non-uniform user distribution, especially when the user and BS

locations are dependent. Naturally, such flexibility is desirable to study the

current capacity-centric deployments where BSs are specifically deployed to be

close to the areas of high user density [146]. The most popular and perhaps

the only available option to handle such scenarios is through detailed system

level simulations, which are both time consuming and have to be focused on

a limited range of system parameters [147,148].

B.2 Contribution

As a first step towards a tractable model with non-uniform UE dis-

tributions, we propose a slight modification in the way users are sampled by

using the same idea of conditional thinning, which we proposed in Chapter 3 to

model load on different classes of BSs. For simplicity of exposition we demon-

strate the new user sampling method for a single tier cellular network, and

leave the extension to HetNets as a future work. Starting with a higher den-

sity of BSs, we first assume that a typical user is located at the origin. After

selecting the serving BS, we condition on this active link and independently

thin the rest of the BS point process so that the resulting density matches the

desired density of the actual BSs. The thinning operation pushes the typical

user in the cell interior relative to the new cell edge defined by the resulting

point process. The bias induced in the location of a typical user towards its
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serving BS can be tuned by varying the thinning probability. We make this

notion precise by deriving the distribution of the ratio of the distances of the

user to its serving BS and the dominant interferer as a function of the thin-

ning probability. We also show that this framework can be used as a tractable

generative model to study non-uniform user distributions where the users are

more likely to lie closer to the BS. The exact analysis of such non-uniform user

distributions is in general hard due to the correlation present in the user and

BS locations. The impact of the proposed model on the cellular performance

analysis and its key differences from the existing model based on uniform user

distribution are highlighted in terms of the coverage predictions.

It is worth noting that although this work is developed in the context

of cellular networks, it applies to much wider class of point process problems

involving dependence in the location of the observation point and the point

process.

B.3 Proposed Method of Sampling users

We consider a homogeneous PPP Φ of density λ, a thinned version of

which will eventually model the BS locations. Recall that we consider a single

tier cellular network in this discussion. The downlink analysis is performed

at a typical user assumed to be at the origin [69]. The received power at a

typical user from the BS located at x ∈ Φ is

Px = Phx‖x‖−α, (B.1)
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where P is the transmit power, hx ∼ exp(1) models channel power distribution

under Rayleigh fading and ‖x‖−α models standard distance based path loss

with α > 2 being the path loss exponent. More general fading distributions

can be studied using tools developed in [73, 131, 149] and in Chapter 5. For

simplicity of exposition, we will ignore thermal noise in this discussion.

The proposed method of sampling the interior users can be understood

in two simple steps shown in Fig. B.1. The first step is to identify the serv-

ing BS in Φ for a typical user depending upon the cell association technique

being considered. While the proposed method is general, for brevity we con-

sider nearest-neighbor cell association model discussed in [1], where each user

connects to its nearest BS. It is also the same as maximum average power con-

nectivity model, where each user connects to the BS that provides maximum

long-term average received power. In Fig. B.1 (first), the typical user connects

to its nearest BS, which is the one that corresponds to the Voronoi cell in which

it lies. Denote the location of this serving BS by xs ∈ Φ. The second step is to

independently thin the point process Φ \xs where each point is independently

retained with probability p as shown in Fig. B.1 (second). Since the thinning

is conditional on the serving BS, we call it conditional thinning. The thinned

process Φb models the BS locations. Due to conditional thinning, the point

process Φb is no longer a PPP. After tessellating the space based on Φb and

keeping the position of the user fixed, we note that the user is pushed towards

the cell interior compared to the new cell edge as shown in Fig. B.1 (third).

As discussed in the next section, a typical user can be pushed arbitrarily close
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Figure B.1: (first) The Voronoi tessellation of the point process Φ. Dark
triangle denotes a typical user. (second) The point process thinned by p =
.3. The remaining points form BS point process Φb. (third) The Voronoi
tessellation of Φb. Observe that the typical point is now in the cell interior.
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to its serving BS by choosing an arbitrarily small value of p but remains edge

biased for high values of p.

B.4 Impact on Cellular Networks

After providing an overview of the new user sampling model, we now

formalize the effect of conditional thinning perceived by a typical user. Denot-

ing R1 and R2 to be the distances of the closest and the next closest point of

Φb to the origin, we define our first metric to be R = R2/R1. It corresponds to

the ratio of the distances of a typical user to its serving BS and the dominant

interferer, and provides some insights into the expected performance of a typ-

ical user. For instance, if the value of R is close to 1, it means that the user is

near the cell edge, i.e., the dominant interferer is approximately at the same

distance as the serving BS and hence the received signal-to-interference-ratio

(SIR) is expected to be low. It is important to note that R ≥ 1 by construction,

since the serving BS is always the closest one in our cell association model. We

now derive the distribution of R after deriving the joint distribution of R1 and

R2 as a function of thinning probability p in the following Lemma. Interested

readers can refer to [150] for the marginal distribution of Rn.

Lemma 20. The cumulative distribution function (CDF) of R is

FR(r) = 1− 1

1 + p(r2 − 1)
, r ≥ 1. (B.2)

Proof. For notational simplicity, we first define the following disjoint sets:

E1 = {x ∈ R2 : ‖x‖ ≤ r1}
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E2 = {x ∈ R2 : r1 < ‖x‖ ≤ r1 + dr1}

E3 = {x ∈ R2 : r1 + dr1 < ‖x‖ ≤ r2}

E4 = {x ∈ R2 : r2 < ‖x‖ ≤ r2 + dr2},

where E1 denotes a circle centered at origin and the rest denote annular regions

defined by concentric circles centered at the origin. Further let N(E) be a

random counting measure of a Borel set E, i.e., N(E) = # of points in E. Now

to derive the CDF of R, we first derive the joint probability density function

(PDF) of R1 and R2, which by definition can be expressed as

fR1,R2(r1, r2) = lim
dr1→0
dr2→0

P (R1 ∈ E2, R2 ∈ E4)

dr1dr2

. (B.3)

The numerator of the above expression can be expressed as:

P (R1 ∈ E2, R2 ∈ E4) =

P (N(E1) = 0, N(E2) = 1, N(E3) = 0, N(E4) = 1) = (B.4)

P (N(E1) = 0)P (N(E2) = 1)P (N(E3) = 0)P (N(E4) = 1) ,

where the simplification follows from the fact that the sets Ei are disjoint.

Now recall that the point process Φ is independently thinned by probability

p outside the circle of radius r1 + dr1. Therefore, the above expression can be

written as:

P (R1 ∈ E2, R2 ∈ E4) = e−λπr
2
1

λπ
[
(r1 + dr1)2 − r2

1

]
e−λπ[(r1+dr1)2−r2

1]e−pλπ[r
2
2−(r1+dr1)2]

pλπ
[
(r2 + dr2)2 − r2

2

]
e−pλπ[(r2+dr2)2−r2

2], (B.5)
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which for vanishingly small dr1 and dr2 can be simplified to:

p(2πλ)2r1r2 exp
(
−λπr2

1(1− p)
)

exp
(
−pλπr2

2

)
dr1dr2, (B.6)

from which the joint PDF of R1 and R2 can be expressed as:

fR1,R2(r1, r2) = p(2πλ)2r1r2e
−λπr2

1(1−p)e−pλπr
2
2 , (B.7)

for r2 ≥ r1 ≥ 0. Using this joint density, the CCDF of R can now be expressed

as:

P[R > r] = P
[
R2

R1

> r

]
(B.8)

=

∫ ∞
r2=0

∫ r2
r

r1=0

fR1,R2(r1, r2)dr1dr2 =
1

1 + p(r2 − 1)
, (B.9)

which completes the proof.

Recall that for p = 1 the proposed model reduces to the uniform dis-

tribution of users, leading to the following corollary.

Corollary 17. The CDF of R for the typical observation point that is defined

to be uniformly distributed in R2 independent of the BS locations (p = 1 in the

proposed model) is

FR(r) = 1− 1

r2
, r ≥ 1. (B.10)

Corollary 18. The mean value of R as a function of p is

E[R] = 1 +
1√

p(1− p)

(
π

2
− tan−1

( √
p

√
1− p

))
, (B.11)

which for p = 1 is E[R] = 2.
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Figure B.2: The CDF of R for various values of conditional thinning probabil-
ity p. The theoretical results are overlaid with dotted plots of the simulation
results showing perfect match.

Remark 24 (Dependence in user and BS point processes). The level of depen-

dence induced in the locations of the users and the BSs is inversely proportional

to the thinning probability p, i.e., the probability of finding a typical user in

the cell interior close to its serving BS is higher for smaller values of p. This

is evident from the mean of R given by Corollary 18 and from the plot of the

CDFs of R for various values of p in Fig. B.2.

We now derive the coverage probability of a typical user sampled under

the new proposed method. The coverage probability Pc denotes the average

fraction of users in coverage and can be formally defined as the CCDF of SIR
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as follows:

Pc = P (SIR > β) = P

(
hxs‖xs‖−α∑

y∈Φb\xs hy‖y‖
−α > β

)
, (B.12)

where the serving BS is assumed to be located at xs. Using tools developed

in [1], a simple expression can be derived for the coverage probability of a

typical user under the proposed sampling method. The main result is given in

the following Lemma along with a brief proof sketch.

Lemma 21. The coverage probability of a typical user when it connects to its

nearest BS under the proposed user sampling method with thinning probability

p is

Pc(α, β, p) =

[
1 + pβ

2
α

∫ ∞
β−

2
α

1

1 + u
α
2

du

]−1

, (B.13)

which for α = 4 simplifies to

Pc(4, β, p) =
[
1 + pβ

1
2

(
π/2− arctan(β−

1
2 )
)]−1

. (B.14)

This result directly follows from Theorem 2 of [1] with a slight modifica-

tion to incorporate conditional thinning of the point process Φ. The coverage

probability is first conditioned on the distance of a typical user to its serving

BS, which can be computed by the null probability of a PPP with density

λ. Conditioned on this distance, say u, the interference field defined over

R2 ∩ B(0, u)c is a PPP with density pλ, where B(0, u) is a ball with radius u

centered at 0 and p appears due to conditional thinning. This is the step where
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the proof of the current Lemma differs from that of Theorem 2 of [1]. The re-

maining proof, which mainly involves the derivation of the Laplace transform

of interference, remains the same.

Remark 25 (Scale invariance and effect of p on Pc). For any given value of

thinning probability p, the coverage probability is independent of the density

of the BSs in an interference limited cellular network. This scale invariance

result is a generalization of a similar observation reported in [1] for the uniform

distribution of the users, which is a special case of the proposed model and

corresponds to p = 1. As expected, the coverage probability is a monotonically

decreasing function of p. This is consistent with the observations reported

in [102], where a similar parametrization was used to model load on various

classes of BSs in a heterogeneous cellular network.

B.5 Non-Uniform user Distribution

In this section, we show that the framework developed in the previous

section can be used as an accurate analytical generative model for the non-

uniform user distributions where the users are clustered around their serving

BSs. We first explain the simulation setup for this non-uniform user distribu-

tion model and then describe a subtle difference in this model and the user

sampling framework developed in the previous section.

To simulate the non-uniform user distribution model, start with a re-

alization of a PPP Φ with density λ and form the Voronoi tessellation. Recall
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Figure B.3: A realization of the proposed non-uniform user distribution model.
The big circles denote BSs and the small circles denote users.

that in case of a cellular network, the Voronoi cell of each point denotes its

coverage region in the nearest neighbor connectivity model. Distribute Nu

users uniformly in each Voronoi cell. For concreteness, we assume that Nu is

the same for all the BSs and equal to the number of time-frequency resource

blocks, which models a full-buffer system. This assumption can be relaxed

under certain conditions as discussed in Chapter 3. Until this point, the user

distribution is fairly uniform although there is a subtle difference in this model

and the way typical user is usually defined to be uniformly distributed over R2.

We will remark on this difference later in this section. To induce dependence

in the BS and user point processes, we again use the the thinning idea and

retain points of the realization of Φ independently with probability p and re-

move the rest. The users corresponding to the points that are removed are also
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Figure B.4: Comparison of the coverage probability of the proposed non-
uniform user distribution model with the analytical expression derived in
Lemma 21 and the baseline model assuming uniform user distribution.

removed. The thinned version of the point process Φ with density λp models

the BS locations. For the new coverage areas defined by the thinned point

process, the remaining users are biased towards the cell interior as shown in

Fig. B.3. A favorable characteristic of this model is the probabilistic attraction

introduced in the user and BS point processes without inducing any geomet-

ric constraints. The coverage probability can now be numerically evaluated

by averaging over these user locations. Recall that we assume interference-

limited scenario where thermal noise is negligible. For this setup, it is easy

to argue that the coverage probability is invariant to the changes in P , λ and

Nu. Note that the result of Lemma 21 is not exact for this simulation model,

as remarked below.
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Remark 26 (User uniformly distributed in R2 vs. in randomly chosen Voronoi

Cell). There is a subtle difference in performing downlink analysis at a typi-

cal user uniformly distributed in R2 and uniformly distributed in a randomly

chosen Voronoi cell. The former corresponds to the analytical model discussed

in the previous section for p = 1 and the latter corresponds to the simulation

model discussed in this section. The difference is induced by the structure of

Poisson Voronoi tessellation and can be understood by a simple fact that a

point uniformly distributed in R2 is more likely to fall in a bigger Voronoi cell,

whereas there is no such bias towards bigger cells when the Voronoi cell itself

is chosen randomly.

We now compare the coverage probability of this non-uniform user dis-

tribution model with the analytical expression derived in Lemma 21 in Fig. B.4.

We first note that the plots are surprisingly close and the difference highlighted

in Remark 26 does not have a significant impact on the coverage probability.

Thus, the analytical model based on conditional thinning can be used as an

accurate generative model to study coverage probability for this non-uniform

user distribution model described in this section. Further, we compare the

coverage probability with the baseline model, where the users are distributed

uniformly over R2 independent of the BS point process. We note that the

difference in coverage predictions is significant even for high values of p. This

clearly highlights the importance of accurate user distribution models in the

performance analysis of cellular networks.
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B.6 Summary

In this appendix, we addressed the problem of incorporating non-uniform

user distributions in the random spatial models for cellular networks. Based

on the idea of conditional thinning, we first proposed a model to bias the lo-

cation of a typical user towards cell interior and then used it as a generative

model to study deployment scenarios where the users are more likely to lie

close to their serving BSs. The extension of this idea to HetNets is left as a

promising future work.
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Appendix C

Appendix to Chapter 4

C.1 Signaling Preliminaries

The received signal yk from kth tier BS at a typical user located at the

origin is given by

yk =
√
Pk‖xk‖−

α
2 v∗kxkzk +

∑
k∈K

∑
y∈Φj\xk

√
Pj‖y‖−

α
2 u∗jyzj, (C.1)

where Pk is the per user transmit power of kth tier BS, and zk ∈ CMk×1 is the

normalized transmit signal vector. The channel vector from kth tier BS to a

typical user located at origin is denoted by vkx ∈ CMk×1 and for the interfering

link from a jth tier BS located at y ∈ R2 is denoted by ujy ∈ CMj×1. The

vectors v,u are assumed to have i.i.d. CN(0, 1) entries, independent across

BSs and of the user distances.

This chapter assumes linear precoding, in which the kth tier BS multi-

plies the data symbol sk,i destined for the ith user, for 1 ≤ i ≤ Ψk, by wk,i so

that the transmitted signal is a linear function, i.e. zk =

Ψk∑
i=1

wk,isk,i. When

zero-forcing beamforming with perfect CSI is employed to serve Ψk, Ψj users in

tier k, j respectively, the columns of the precoding matrix Wk = [wk,i]1≤i≤Ψk ∈

CMk×Ψk equal the normalized columns of Ṽk
∗
(ṼkṼk

∗
)−1 ∈ CMk×Ψk , for Ṽ =
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[ṽ1, . . . , ṽk . . . ṽΨk ]
∗ ∈ CΨk×Mk being the concatenated matrix of channel di-

rections, where the direction of each vector channel is represented as ṽk ,
vk
‖vk‖

.

The desired channel power is given by hkx = |v∗kxwk,k|2 = |ṽ∗kxwk,k|2 · ‖vkx‖2

which equals the product of two independent rv’s which are distributed as

Beta(Mk − Ψk + 1,Ψk − 1) and Γ(Mk, 1), respectively. Therefore, the chan-

nel power is hkx ∼ Γ(∆k, 1) with ∆k = Mk − Ψk + 1. For the distribution

of the interfering marks, we assume that the precoding matrices have unit-

norm orthogonal columns and that Wj is calculated independently of ujy.

Therefore, ũjy and wj are independent isotropic unit-norm random vectors,

and
∣∣ũ∗jywj

∣∣2 is a linear combination of Ψj complex normal random variables,

i.e. exponentially distributed. Neglecting the spatial correlation, we have that

gjy ∼ Γ(Ψj, 1), since it is the sum of Ψj i.i.d. exponential random variables.

The case ∆k = 1 and Ψj = Mj is referred to as full SDMA. The

case that each BS only serves one user, i.e. Ψk = 1, using the beamforming

vector wkx = ṽkx corresponds to SU-BF or MISO eigen-beamforming. In

that case, the channel power is given by hkx ∼ Γ(∆k, 1) with ∆k = Mk and

the interference marks as gjy ∼ Γ(Ψj, 1) with Ψj = 1, ∀j ∈ K, since the

beamforming vectors wjy used by the jth tier interfering BS are calculated

based on vj, i.e. independently of ujy.
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