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Abstract—We develop a tractable, flexible, and accurate model
for downlink heterogeneous cellular networks. It consists of K
tiers of randomly-located base stations (BSs), where each tier
may differ in terms of the average transmit power, the supported
data rate and the BS density. This allows elements spanning
traditional, micro, pico, and femtocell BSs to be simultaneously
considered. Assuming a mobile user connects to its strongest BS,
we derive its Signal-to-Interference-Ratio (SIR) distribution and
use that to find the coverage (equivalently outage) probability
over the entire network. We verify the accuracy of these analytical
results through empirical comparisons with an actual 4G macro-
cell network.

I. INTRODUCTION

Cellular networks are in the process of a major transition,
and will become increasingly complex over the next decade
due to the co-deployment in space and frequency of very
different classes of BSs. Traditional BSs will be joined by
micro, pico, and femtocell BSs, as well as distributed antennas
and out-of-band relays [1]-[6]. These heterogeneous cellular
networks (HCNs) have BSs that differ by a few orders of
magnitude in terms of their transmit power (and hence range)
and the density in which they will be deployed. For example, it
is easy to imagine a traditional cellular network having perhaps
10 pico-cells and 100 low-power femtocells in each high-
power macro-cell, sharing the same licensed spectrum. Various
plausible scenarios for HCNs are graphically illustrated in
Figs. 1-4.

Clearly, the coverage, rate, and reliability that mobile users
can achieve in such networks would seem to be quite different
versus the familiar one-tier cellular networks of yesterday.
There are two main challenges in understanding these multi-
tier heterogeneous networks. First and foremost is to develop
system models that capture the heterogeneity of these networks
with enough accuracy to be realistic but enough simplicity
to be useful. Second, is to be able to quantify important
performance metrics like outage probability (versus an arbi-
trary Signal-to-Interference-plus-Noise-Ratio (SINR)), with the
end goal of better understanding system design principles for
HCNs. Solving these two problems is the goal of this paper.

Those familiar with cellular network analysis are likely to
immediately recognize that these two goals are fairly ambi-
tious, since even for traditional cellular networks, very sim-

plified models must be used to gain tractability. For example,
even to the present day the most popular analytical model is
the incredibly simplistic Wyner model, which assumes channel
gains from all the interfering BSs to be equal [8]. Although this
model has a merit of being tractable, it is not accurate in most
cases and does not even have a notion of outage since SIR

is deterministic [9]. The most popular but largely intractable
model is the two-dimensional hexagonal grid model, which
is ubiquitous in textbooks and research alike. Typically, the
grid model is used as the basis of system-level simulations
and analysis is not possible [10]-[12]. However, the accuracy
of such models in the case of random BS locations, such as
those of femtocells, is questionable. A third way is to model
the locations of BSs by a point process and then use techniques
with foundations in stochastic geometry [13]-[16] to develop
a tractable analytical model [17]. In [17], we showed perhaps
surprisingly that not only does the added randomness result in
a much more tractable framework, but even with the simple
Poisson Point Process (PPP) it is about as accurate as the grid
model.

The results in this paper can be viewed as an extension of
[17] to a general downlink multi-tier network. This random
model for the BS placements is likely even more sensible
for a K-tier network since the BSs in lower tiers are more
likely to mimic a random spatial distribution than the macro
base stations. The model thus consists of K tiers of PPP
distributed BSs, where each tier may differ in terms of the
average transmit power, the supported data rate, and the BS
density (the average number of BSs per unit area). We assume
each mobile connects to the strongest BS (open access), or the
strongest one it is authorized to access (closed access).

The main result of the paper is a simple closed-form
expression for the coverage probability, which is basically the
probability that a randomly located mobile can achieve a target
SIR βi with at least one of the tiers. This coverage probability
can be easily visualized as the complementary cumulative
distribution function (CCDF) of the effective received SIR

when all the tiers have the same SIR threshold β. We confirm
the accuracy of our results and assumptions with simulations
against an actual 4G macro-cell network (with lower tiers
again modeled as Poisson distributed).



II. SYSTEM MODEL

A. Heterogeneous Cellular Network Model

We model a HCN as a K-tier cellular network where each
tier models the BSs of a particular type, such as those of
femtocells or pico-cells. The BSs across tiers may differ in
terms of the transmit power, the supported data rate and their
spatial density. We assume that the BSs in the i-th tier are
spatially distributed as a PPP Φi of density λi, transmit at a
power Pi, and have a Signal-to-Interference-plus-Noise-Ratio
(SINR) target of βi. More precisely a mobile can reliably
communicate with a BS x in the i-th tier only if its downlink
SINR with respect to that BS is greater than βi. Thus, each
tier can be uniquely defined by the tuple {Pi, βi, λi}.

The mobiles are also modeled by an independent PPP Φm
of density λm. Without loss of generality, we conduct analysis
on a typical mobile user located at the origin. The fading
(power) between a BS located at point x and the typical
mobile is denoted by hx and is assumed to be i.i.d exponential
(Rayleigh fading). More complex channel distributions can be
considered, at the price of decreased tractability, and we leave
such generalizations to future work. The standard path loss
function is given by l(x) = ‖x‖−α, where α > 2 is the
path loss exponent. Hence, the received power at a typical
mobile user from a BS located at point xi (belonging to ith

tier) is Pihxi‖xi‖−α, where hxi ∼ exp(1). The resulting SIR

expression assuming the user connects to this BS is:

SIR(xi) =
Pihxi‖xi‖−α∑K

j=1

∑
x∈Φj\xi Pjhx‖x‖

−α
. (1)

Since self-interference dominates noise in all cellular networks
of even modest density, we neglect thermal noise in this work,
which further improves tractability. It was shown that adding
noise has no affect on these results in the regimes of most
interest in the 1-tier case [17], and we would expect that to
hold even more strongly for a multi-tier network.

We consider the maximum SIR connectivity model, where
each mobile user connects to its strongest BS, i.e., the BS that
offers the highest received SIR. Mathematically the typical
node at the origin is in coverage if:

max
x∈Φi

SIR(x) > βi,

for some 1 ≤ i ≤ K. An important assumption we make
is that the thresholds βi > 1 ( 0 dB). The following Lemma
shows that under this assumption, at most one BS in the entire
network can provide SIR greater than the required threshold,
which admits a simple form for the resulting coverage prob-
ability. Although some users in commercial cellular networks
indeed have operating SIR below 0 dB, they are in a distinct
minority (cell edge users) and indeed later we show that this
model holds very accurately at least to -4 dB, which covers
even cell edge users.

Lemma 1. Given positive real numbers {a1, a2 . . . an}, which
correspond to the received power from each BS at the typical
mobile user and defining bi = ai∑

j 6=i aj
, which corresponds to

the SIR of the ith BS, at most m bi’s can be greater than 1/m
for any positive integer m. As a special case of interest, only
one bi can be greater than 1 and hence each randomly chosen
mobile user has at most one BS with which it can successfully
communicate.

Proof: See Appendix.
We will comment on the applicability of the derived results

in the βi < 0 dB regime in the Numerical Results section.

Fig. 1. Coverage regions in two-tier network. Both macro (red circles)
and femto (black squares) BSs are distributed as independent PPPs. Also
Pfemto = Pmacro/1000, λfemto = 5λmacro.

Fig. 2. Coverage regions in two-tier network. Macro BS locations (red
circles) correspond to actual 4G deployment. Femto BSs (black squares) are
distributed as PPP. Also Pfemto = Pmacro/1000, λfemto = 5λmacro.

B. Coverage Regions

Before going into the analysis, let us first build a little in-
tuition about the coverage regions in heterogeneous networks.
Coverage regions are plotted in two steps. First, we randomly
place K different types of BSs on a 2-D plane according to the



aforementioned independent PPPs. Second, the space is fully
tessellated following the maximum SIR connectivity model.
Due to the differences in the transmit powers over the tiers,
the coverage plots do not correspond to a classical Voronoi
tessellation (also called Dirichlet tessellation) [18]. In fact,
they closely resemble a circular Dirichlet tessellation, which
is also called a multiplicatively weighted Voronoi diagram,
where the distance between the points (BSs) is multiplied by
positive “weights” [19]. The coverage regions for a two-tier
network – for example comprising macro and femtocells –
are depicted in Figs. 1 and 2 for two cases: 1) the macro-cell
BSs are distributed according to PPP (our model), and 2) the
macro-cell BSs correspond to an actual 4G deployment over
a relatively flat urban region. The femtocells are distributed
according to an independent PPP in both cases. Qualitatively,
the coverage regions are quite similar in the two cases. The
random model used in this paper could likely be further im-
proved by incorporating a point process that models repulsion
or minimum separation distance, such as determinantal and
Matern processes [14], [15], but we leave such extensions
(which will erode tractability) to future work. We will provide
more quantitative support of our model in the numerical results
section.

Fig. 3. Coverage regions in three-tier network. All the tiers, i.e., macro
(red circles), pico (green triangles), femto (black squares), are modeled as
independent PPPs. Ppico = Pmacro/100, Pfemto = Pmacro/1000,
λpico = 2λmacro, λfemto = 8λmacro.

In Figs. 3 and 4, the coverage regions are now shown
with an additional pico-cell tier. As is the case in the actual
networks, we assume that the macro-cells have the highest
and the femtocells have the smallest transmit powers, with
pico-cells in between. Therefore, the coverage regions for the
femtocells are in general much smaller than the other two
tiers, particularly when they are nearby a higher power BS.
Similarly, we observe that the coverage footprint of pico-
cells increases when they are farther from the macro BSs.
These observations highlight the particularly important role of
smaller cells on the cell edges.

III. SIR DISTRIBUTION AND COVERAGE PROBABILITY

A typical mobile user is said to be under coverage if it is
able to connect to at least one of the BSs. In the case when all
the tiers have same SIR threshold β > 1, coverage probability
can be easily visualized as the complementary cumulative
distribution function (CCDF) of the effective received SIR.
With this understanding, we now derive the probability of
coverage for a randomly located mobile user both for the open
and closed access strategies.

Fig. 4. Coverage regions in three-tier network. Macro BS locations
(red circles) correspond to actual 4G deployment. Pico (green triangles)
and femto (black squares) BSs are distributed as independent PPPs. Also
Ppico = Pmacro/100, Pfemto = Pmacro/1000, λpico = 2λmacro,
λfemto = 8λmacro.

A. Open Access

We first assume the open access strategy where a typical
mobile user is allowed to connect to any tier without any
restriction. The main result for the probability of coverage
in this setup is given by Theorem 1.

Theorem 1. The coverage probability for a typical randomly
located mobile user assuming Rayleigh fading for all the links
is:

Pc({λi}, {βi}, {Pi}) =
π

C(α)

∑K
i=1 λiP

2/α
i β

−2/α
i∑K

i=1 λiP
2/α
i

, βi > 1,

(2)
where C(α) can be expressed as:

C(α) =
2π2 csc( 2π

α )

α
. (3)

Proof: The coverage probability in a K-tier network
under maximum SIR connectivity model is

Pc = P

 ⋃
i∈K,xi∈Φi

SIR(xi) > βi





= E

1
 ⋃
i∈K,xi∈Φi

SIR(xi) > βi


(a)
=

K∑
i=1

E
∑
xi∈Φi

[1 (SIR(xi) > βi)]

(b)
=

K∑
i=1

λi

∫
R2

P
(
Pihxi`(xi)

Ixi
> βi

)
dxi

(c)
=

K∑
i=1

λi

∫
R2

E
[
exp

(
− βiIxi
Pi`(xi)

)]
dxi

=

K∑
i=1

λi

∫
R2

LIxi

(
βi

Pil(xi)

)
dxi, (4)

where (a) follows from Lemma 1 under the assumption that
βi > 1 ∀ i, (b) follows from Campbell Mecke Theorem and (c)
follows from the fact that the channel gains are assumed to be
Rayleigh distributed. Here LIxi (.) is the Laplace transform
of the cumulative interference from all the tiers when the
randomly chosen mobile user is being served by the ith tier.
Since the point processes are stationary, the net interference
does not depend on the location xi. Therefore, we denote LIxi
by LIi which is given by

LIi (s) =E [exp (−sIxi)]

=

K∏
j=1

E

 ∏
xj∈Φj/xi

exp
(
−sPjhxj l(xj)

)
=

K∏
j=1

EΦj

 ∏
xj∈Φj/xi

Eh
[
exp

(
−sPjhxj l(xj)

)]
(a)
=

K∏
j=1

EΦj

 ∏
xj∈Φj/xi

1

1 + sPj l(xj)


(b)
=

K∏
j=1

exp

(
−2πλi

∫ ∞
0

(
1− 1

1 + sPjr−α

)
rdr
)

(c)
=

K∏
j=1

e(−2πλi(sPj)
2/α

∫ ∞
0
r
∫ ∞
0

exp(−t(1+rα))dt dr),

(5)

where (a) follows from the Rayleigh fading assumption (i.e.,
h ∼ exp(1)), (b) follows by PGFL and, (c) results from
simple algebraic manipulation. Using the properties of Gamma
function, (5) can be further simplified to

LI(s) = exp

(
−s2/αC(α)

k∑
i=1

λiP
2/α
i

)
, (6)

where C(α) is the Baccelli’s constant and

C(α) =
2π2 csc( 2π

α )

α
. (7)

Using (6) and (4) the coverage probability Pc is

Pc({λi}, {βi}, {Pi}) =

K∑
i=1

λi

∫
R2

LIxi

(
βi

Pil(xi)

)
dxi

=
π

C(α)

∑K
i=1 λiP

2/α
i β

−2/α
i∑K

i=1 λiP
2/α
i

. (8)

This completes the proof.
Setting K = 1, leads back to the single-tier case and leads

to the following corollary.

Corollary 1. In a single tier cellular network (i.e., K = 1),
Pc(λ, β, P ) can be expressed as:

Pc(λ, β, P ) =
π

C(α)β2/α
. (9)

This corollary states that Pc in a single-tier network is
independent of the density of the BSs and is solely dependent
upon the SIR threshold value. This is consistent with the fact
that increasing the density of the BSs decreases the distance
of the typical mobile from the BS to which it is connected
and hence increases the received power. At the same time, it
decreases the distance of the mobile from the interferes with
the same factor and hence increases the interference power
with the same factor. Perhaps surprisingly, both the effects
cancel each other and hence coverage probability does not
depend on the density of BSs.

Corollary 2. Assuming βi = β ∀ i, Pc({λi}, β, {Pi}) can be
expressed as:

Pc({λi}, β, {Pi}) =
π

C(α)β2/α
. (10)

This is perhaps an unexpected result since it states that
the coverage probability is not affected by the number of
tiers. In fact, it is exactly the same as that of the single-tier
case. Therefore, more BSs can be added in any tier without
affecting the coverage and hence the net network capacity can
be increased linearly with the number of BSs.

B. Closed Access

Under closed access scheme, a mobile user is allowed to
connect to only a subset of tiers and the rest of the tiers act
purely as interferers. The main result of coverage probability
under closed access is given by Proposition 1.

Proposition 1. Assuming a mobile user is allowed to connect
to only a subset B of the K tiers, the coverage probability can
be expressed as:

Pc({λi}, {βi}, {Pi}) =
π

C(α)

∑
i∈B λiP

2/α
i /β

2/α
i∑K

i=1 λiP
2/α
i

, (11)

Proof: The proof follows directly from the proof of
Theorem 1.

Corollary 3. Assuming the threshold of each tier to be same
(and equal to β) and the transmit power of each tier to be same



(and equal to P ), the coverage probability can be expressed
as:

Pc({λi}, β, {Pi}) =
π

C(α)β2/α

∑
i∈B λi∑K
i=1 λi

, (12)

Above corollary states that if the thresholds and transmit
powers of all the tiers are same, closed access has a lower
coverage than open access by a factor of

∑
i∈B λi∑K
i=1 λi

.

IV. NUMERICAL RESULTS
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Fig. 5. Coverage probability in a two-tier HCN (K = 2, α = 3, P1 = 1000,
P2 = 1, λ2 = 2λ1, β2 = 1 dB).

While a random PPP model is the best that can be hoped for
in modeling “unplanned” tiers, such as femtocells, its accuracy
in modeling “planned” BS locations, such as those of macro-
cells, is open to question. Therefore, we begin this section by
verifying the PPP assumption for macro-cells from a coverage
probability perspective. To achieve this, we consider a two-tier
network in three different scenarios: 1) the macro-cell BSs are
distributed according to PPP (our model), 2) the macro-cell
BSs correspond to an actual 4G deployment, and 3) macro-
cell BSs are distributed according to hexagonal grid model.
The second tier is modeled as an independent PPP in all
the three cases. We compare the coverage probabilities for
these scenarios in Fig. 5. We observe that the actual coverage
probability lies in between the coverage probabilities achieved
by the PPP and the grid model. This is due to the fact that
the likelihood of having a dominant interferer is highest in
PPP and least in grid model, with the real scenario being in-
between. This comparison shows that the PPP assumption is
nearly as accurate as the grid model in the case of macro-
cells, with PPP providing a lower bound and grid model
providing an upper bound to the actual coverage probability.
We now validate the main coverage probability result, given
by Theorem 1, by comparing it with the simulation result in
Fig. 5. It should be noted that Pc given by Theorem 1 is an
exact solution to coverage probability when βi > 1 ∀ i but is
an upper bound on the coverage probability when βi < 1. As

expected, theoretical and simulated results match reasonably
well for βi > 1 but interestingly, the theoretical results also
provide a tight upper bound to the exact solution even until
β1 = −4dB (≈ .4). This suggests that under the given
simulation parameters, the likelihood of connecting to multiple
BSs even through β1 = −4dB is very low.
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Fig. 6. Effect of changing the density of femto-cell BSs on the coverage
probability in a two-tier HCN (K = 2, α = 3, P1 = 10, P2 = .1, λ1 = 1,
β1 = 1 dB).
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Fig. 7. Effect of changing the transmit power of femto-cell BSs on the
coverage probability in a two-tier HCN (K = 2, α = 3, P1 = 100, λ1 = 1,
λ2 = 50, β1 = 1 dB).

After validating the main result, we again look at the
coverage probability in the context of a two-tier HCN where
a femtocell network is overlaid on a conventional macro-cell
network. In particular, we study the effect of BS density and
transmit power of the femtocell tier on the overall coverage
probability in Figs. 6 and 7, respectively. We note that the
coverage probability has a strong dependence on the SIR

threshold of the femtocell tier. In fact, coverage probability
can be theoretically improved if the femtocell tier threshold
β2 is lower than that of the macro-cell tier threshold β1.



This is due to the fact that more BSs can now connect to
the femtocell tier due to a lower threshold, hence leading
to an improved coverage. On the other hand, the addition
of femtocell tier reduces the coverage probability if the SIR

threshold of femtocell tier is higher than that of the macro-cell
tier.

V. CONCLUSION

In this paper, we have developed a tractable model for K-
tier downlink HCNs. The BS locations of each tier are modeled
by an independent PPP. The BSs across tiers may differ in
terms of the transmit power, the supported data rate and the BS
density. While a random model is the best that can be hoped
for in modeling “unplanned” tiers, such as femtocells, we have
shown that this model is also as good as the popular grid model
for modeling the “planned” tiers, such as macro-cells, by
comparing it with an actual 4G macro-cell deployment. Using
this model, we have obtained simple closed form expressions
for the coverage probability of a randomly located mobile user
in both the open and the closed access scenarios.

Future extensions to our approach from physical layer
perspective could be in the study of HCNs that employ mul-
tiple antennas, spread spectrum, power control, interference
cancelation or interference alignment. From the MAC layer
perspective, it would be interesting to include scheduling,
resource allocation and frequency reuse in our setup.
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APPENDIX
PROOF OF LEMMA 1

bi =
ai∑
j 6=i aj

=
ai∑

j aj − ai

⇒ bi
1 + bi

=
ai∑
j aj

⇒
n∑
i=1

bi
1 + bi

= 1

⇒
n∑
i=1

1

1/bi + 1
= 1. (13)

We first prove the result for m = 1 (by contradiction) and then
show that it can be trivially extended to the case of a general
m.

We first observe that (13) is satisfied if only one of the bi’s
is greater than 1. Now assume that two bi’s are greater than
one and without loss of generality, assume that they are b1 and
b2. This implies 1/b1 and 1/b2 ∈ (0, 1). Therefore, 1

1/bi+1 and
1

1/bi+1 ∈ (1/2, 1). Thus,

n∑
i=1

1

1/bi + 1
=

2∑
i=1

1

1/bi + 1
+

n∑
i=3

1

1/bi + 1
,

> 1 +

n∑
i=3

1

1/bi + 1
, (14)

which is in contradiction with (13). Since (13) does not even
hold for two bi’s greater than one, it proves that the only one
of the bi’s can be greater than one. Similarly for the case of
general m, it is easy to observe that (13) is trivially satisfied if
at most m of the bi’s are greater than 1/m. Now assume that
m+1 bi’s are greater than 1/m and without loss of generality,
assume that they are b1, b2, . . . , bm+1. Proceeding as in (14),

n∑
i=1

1

1/bi + 1
> 1 +

n∑
i=m+2

1

1/bi + 1
, (15)

which is in contradiction to (13). Therefore, at most m bi’s
can be greater than 1/m.


