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Abstract—This paper considers an extended wireless network

with multi-antenna nodes in line-of-sight (LoS) propagation
environment. Assuming that the number of antennas at each
node can be scaled as some arbitrary function of the number
of nodes, we study the scalability of this network, i.e., its ability
to deliver non-zero rate to each source-destination pair. Since
the rank of the LoS multiple-input multiple-output (MIMO)
channel starts collapsing with the increasing separation between
the transmitter and the receiver, we consider two competing
transmission strategies: (i) long hop: each source-destination
pair minimizes the number of hops by sacrificing multiplexing
gain and ideally achieving full power gain over each hop,
and (ii) short hop: each source-destination pair communicates
through a series of short hops each achieving full multiplexing
gain. By characterizing the number of antennas required to
achieve scalability in both the cases, we show that the antenna
requirement is significantly less for the short hop case. These
results have key applications in the design of wireless backhaul
for cellular networks, where the possibility of having massive
MIMO links is becoming a reality due to the increasing maturity
of higher transmission frequencies, e.g., 28 and 38 GHz.

I. INTRODUCTION

Wireless backhaul is becoming a key component of modern
cellular networks, especially in the context of dense urban
deployment of small cells, where it may not always be possible
to provide conventional wired backhaul to all the cell sites [1].
Besides, the increasing understanding of propagation at higher
transmission frequencies provides an additional impetus by
making it possible to pack more antennas in manageable form
factors and hence establish high speed backhaul links among
base stations (BSs) [2]. As a result, the wireless backhaul
networks will likely operate in a slightly different regime
compared to the more familiar networks of the past, i.e., there
will likely be a gradual migration towards higher transmission
frequencies, which will facilitate packing more and more
antennas at the BSs. This regime where the transmission
frequency and the number of antennas per BS scale with the
network size is not very well studied in the literature, perhaps
due to lack of motivation in the conventional single-antenna
networks, and is the main focus of this work.

The study of asymptotic information rate of single-antenna
large wireless networks received a lot of attention in the past
decade. This was initiated by Gupta and Kumar’s seminal
work [3], which along with the refining results of Franceschetti
et al. [4] established a well-known capacity-scaling result
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of ⇥(
p
n) for single-antenna wireless networks, where n is

the total number of nodes in the network. Using hierarchical
cooperation, Özgür et al. [5] demonstrated that it is possible
to do better and that a linear capacity scaling with n is
achievable. On the contrary, Franceschetti et al. [6] argued
that this is not possible and that ⇥(

p
n) holds independent of

the fading and power attenuation models. This contradiction
was settled independently in Lee et al. [7] and Özgür et al. [8],
which showed that while both the results are correct, they are
applicable in different operational regimes depending upon the
spatial degrees-of-freedom (DoF) available with the MIMO
channel. As a part of the analysis, the achievability results
for spatial DoF for LoS MIMO channel were also established
in [7], [8]. This led to an increased interest in understanding
the MIMO channel matrix under LoS propagation model. Two
very recent noteworthy contributions in this direction are by
Desgroseilliers et al. [9], [10]. In [9], a matching upper bound
(within logarithmic factors) is derived for the spatial DoF
of LoS MIMO channels by approximating the LoS MIMO
channel matrix with another random matrix that is easier to
manipulate. Under the same approximation, [10] derives the
number of significant singular values and an upper bound on
the largest singular value of the LoS MIMO channel matrix.

In terms of wireless backhaul design, the focus so far has
mostly been on system design under practical considerations,
e.g., Hur et al. [11] studied millimeter wave beamforming
for wireless backhaul and the effect of wind induced pole
movement on beam alignment. On the other hand, the fun-
damental questions about optimal strategies and performance
limits are not quite resolved yet. For instance, if a BS wants
to communicate data to another, possibly distant, BS, it will
likely have to transmit over multiple hops. Since in LoS
propagation, which is the main focus of this paper, the MIMO
channel starts becoming rank deficient with the increasing
transmitter-receiver separation, the multiplexing gain achieved
over each hop is highly dependent upon the hop length. This
naturally leads to the following two competing strategies:
(i) long hop, where each source-destination pair minimizes
the number of hops by sacrificing multiplexing gain to form
thin beams and ideally achieving full power gain over each
hop, and (ii) short hop, where each source-destination pair
communicates through a series of short hops, each achieving
full multiplexing gain. The main technical contribution of this
paper is the characterization of the number of antennas as a
function of number of BSs n required by each strategy to
make the network scalable, i.e., provide non-zero rate to each
source-destination pair. As a consequence of this result, it is
shown that the short hop strategy is significantly better in terms



of the antenna requirement as the network size grows.

II. SYSTEM MODEL

We consider a LoS MIMO mesh network, where the lo-
cations of the nodes, e.g., BSs in a backhaul network, are
modeled by a perturbed square lattice as shown in Fig. 1.
The distance between the closest lattice points is assumed to
be a constant c. Note that our analysis remains unchanged as
long as each small c⇥ c square in Fig. 1 contains exactly one
point. The random perturbation allows for the fact that it may
not always be possible to place BSs on an ideal lattice due
to practical restrictions, such as the non availability or high
leasing cost of certain cell sites. Further details about how
the lattice is perturbed are not needed in this paper. Note that
the analysis trivially generalizes to the case where each small
square contains constant number of nodes.

For the scaling results, we consider the extended network
model, where we focus our attention on the box Bn with size
c
p
n⇥ c

p
n containing n nodes. Fig. 1 is an example of Bn

with n = 64. Note that although this model has traditionally
been used to study ad hoc networks, it is also applicable
to cellular backhaul because of the possibility of forming
ad hoc multi-hop backhaul links between source-destination
nodes (BSs). We are mainly interested in understanding the
asymptotic capacity scaling of the network formed by the
nodes inside Bn as n ! 1. Note that as n ! 1, the box Bn

also grows, hence the name “extended network”. The source-
destination pairs in Bn are picked uniformly at random, such
that each node is a destination of exactly one source. It is worth
noting that there is another popular model to study scaling
results, namely dense network model, where the node density
tends to infinity, while keeping the size of the box constant.
Interested readers should refer to [5], [12] for a discussion on
the technical differences in the two models. Since the focus
of this paper is on wireless backhaul, it makes more sense to
consider extended network model, which is representative of
a large coverage area with a fixed BS density.

We assume that each node has  (n) antennas, where
 : N+ ! N+ is a monotonically non-decreasing function of
n. As discussed in the sequel, we will be particularly interested
in the case where  (n) =

p
n. Scaling the number of antennas

with the size of network may not seem natural to some readers,
but it is worth noting that this is not unrealistic in the current
networks due to the increasing maturity of millimeter wave
communications, e.g., at 28 and 38 GHz [13]. Recall that as the
carrier frequency increases, the physical size of the antennas
decreases, hence making it possible to pack more antennas in
a manageable form factor. For instance, a working prototype
with a matchbook-sized array of 64 antennas has already
been demonstrated by Samsung [14], which for  (n) =

p
n,

corresponds to the network size of n = 64

2

= 4096 in our
setup. This is already an “asymptotic” regime for an urban
cellular network, e.g., assuming 1 BS per 100 ⇥ 100 m2, it
already covers about 6.4⇥ 6.4 km2 area.

We assume that the antennas at each node are uniformly
distributed in squares of side

p
a, which is assumed to be much

smaller than the distance between any two communicating

Fig. 1. The locations of the BSs modeled as a perturbed square lattice. The
grid and the BS locations are denoted by hollow and filled circles, respectively.

nodes. For  (n) ! 1, the achievable spatial DoF for a LoS
MIMO channel are [7], [8]
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where � is the transmission wavelength and d is the
transmitter-receiver separation. A matching upper bound
(within logarithmic factors) on the DoF is derived recently
in [9] under an element-by-element approximation of the
LoS MIMO channel matrix by another random matrix. As
discussed in the sequel, one particular case of interest is
when a LoS MIMO link can achieve DoF =  (n) for all
d  d

max

, for some constant d
max

independent of n. From
(1), it is clear that for d

max


p
a this can be achieved by:

(i) fixing � and scaling
p
a /  (n), or (ii) fixing a and

scaling � /  (n)�1. In a realistic urban backhaul network,
d
max

would correspond to the separation between closest BSs
or small cells and would be of the order of 100s of meters.
Therefore, for reasonable form factors of the BSs, d

max


p
a

will never hold in practice. Now for the more realistic case of
d
max

>
p
a, DoF =  (n) can be achieved by: (i) fixing � and

scaling a /  (n), or (ii) fixing a and scaling � /  (n)�1.
While it is not possible to keep growing the size of BS
with  (n), it is indeed possible to assume � /  (n)�1,
which is consistent with the ongoing migration towards higher
transmission frequencies [13]. The following remark on the
relevance of these assumptions is in order.

Remark 1 (Urban small-cell network). Let us check if the
above regime is consistent with real-world deployments. Con-
sider an urban wireless backhaul network with d

max

= 100m.
Also consider  (n) = 64, which we know is possible
with the current technology [14]. To achieve full DoF at
a carrier frequency of 30GHz, i.e., � = 1cm, we need
a =  (n)�d

max

= 64m2, which means a square array of
side length 8m. This is clearly a good ball-park number.

The assumption that � /  (n)�1 requires a careful treat-
ment of link budget and pathloss model, which we do next.



Recall that in the LoS environment the channel gain between
two single-antenna nodes with separation d � � is [7]

h =

p
G

�

4⇡d
exp

✓

�j
2⇡

�
d

◆

, (2)

where G is the product of the antenna gains at the transmitter
and the receiver. For � /  (n)�1 and the proportionality
constant of 1 (choice of constant does not matter), we get

h =

p
G

4⇡d (n)
exp (�j2⇡d (n)) . (3)

For a single-antenna transmission, if we assume transmit
power and G to be constants independent of n, the received
power at a fixed distance d goes down as  (n)�2. For a
given receiver sensitivity, i.e., minimum received signal-to-
noise ratio (SNR) required for successful communication, this
would mean that two nodes with a finite distance between
them can no longer communicate beyond a certain  (n). The
more reasonable assumption is to scale up G or the transmit
power /  (n)2 such that the received power at a distance d
remains constant independent of n. In terms of the link budget,
this is equivalent to assuming fixed transmit power and

h = d�1

exp (�j2⇡d (n)) . (4)

Note that although these scaling assumptions are not main-
stream, there have been instances, e.g., [7], where the scaling
of transmission frequency and antenna gain with n have been
considered, and [15], where the number of antennas at the
infrastructure nodes are scaled by the network size in a hybrid
wireless network. Besides, it should be clear that these are
not any more unreasonable than familiar assumptions such as
n ! 1 or SNR ! 1. In this work, we adopt a slightly
modified version of the equivalent model (4) along with fixed
transmit power P . In particular, the gain between the kth

transmit antenna and the ith receive antenna is

hik = min{d�
↵
2

ik , 1} exp (�j2⇡dik (n)) , (5)

where the pathloss exponent ↵ > 2 captures larger attenuation
that may result from multiple propagation paths [8], and
the min{d�

↵
2

ik , 1} avoids singularity at the origin. Note that
the constant

p
G

4⇡ is irrelevant for the scaling results and is
hence ignored in (5). For notational simplicity, we assume
amplitude term min{d�

↵
2

ik , 1} in (5) to be the same and equal
to min{d�↵

2 , 1} for all the transmit-receive antenna pairs for
a given link due to the assumption that the BS form factor is
much smaller than the transmitter-receiver separation d. The
differences in the path lengths can however not be ignored
in the exponential term because they get amplified by  (n).
The channel matrix between two nodes is denoted by H with
entries given by (5), and its conjugate transpose by H†. It will
be enriched, e.g., to include node indices, when required.

Our main focus will be on the throughput achievable simul-
taneously by each source-destination pair, which we denote
by R(n). Without loss of generality, the bandwidth will be
assumed to be 1 Hz, which is shared by all the nodes,
and the noise power spectral density N

0

to be 1 watt/Hz.
We use the following probabilistic version of the ordering

notation as defined in [4]. We write f(n) = O(g(n)) with
high probability (w.h.p.) if 9 a constant K independent of
n such that limn!1 P(f(n)  Kg(n)) = 1. Similarly,
f(n) = ⌦(g(n)) if g(n) = O(f(n)).

III. LONG HOP: BEAMFORMING

In this section, we consider a transmission strategy where
each node transmits a single stream of data at a constant rate
to a farthest possible node in the direction of its destination
in order to minimize the number of hops. This strategy is
motivated by the fact that in the massive-MIMO regime, it is
possible for a node to form thin beams and hence concentrate
transmission energy in the direction of a far-away node without
creating excessive interference to its nearby nodes. Our main
goal is to find an upper bound on R(n) as a function of  (n)
and ↵. Recall that for a transmitter-receiver separation of d >
1, the maximum rate achievable for a single stream is

R(d)
(a)
= log

�

1 + P�
max

(HH†
)

�

(6)
(b)
 log

�

1 + Pd�↵
 (n)2

�

, (7)

where �
max

(HH†
) in (a) is the maximum Eigenvalue of HH†

and should not be confused with transmission wavelength �,
and (b) follows from the fact that �

max

(HH†
)  Tr(HH†

) =

 (n)2. To minimize the number of hops for a given source-
destination pair, our goal is to maximize distance d for each
hop keeping the transmission rate (7) constant. Assuming the
minimum target received power to be P

0

, we have

Pd�↵
 (n)2 � P

0

) d 
✓

P

P
0

◆

1
↵

 (n)
2
↵
= d

c

. (8)

Given d
c

, we need a lower bound on source-destination
separation in order to lower bound the number of hops needed.
The lower bound on the distance is derived in the following
Lemma. A simple proof is given in Appendix A.

Lemma 1 (Lower bound on source-destination separation).
The source-destination separation of a randomly chosen pair
in Bn is ⌦(n

1
2�✏

) w.h.p., where ✏ > 0.

Using this result, the lower bound on the number of hops
required for a randomly chosen source-destination pair N

h

is

N
h

= ⌦

 

n
1
2�✏

d
c

!

. (9)

Since there are n
2

source-destination pairs in the network, the
total number of hops needed in the network is

n

2

N
h

= ⌦

 

n
3
2�✏

d
c

!

. (10)

Therefore, there is at least one of the total n nodes, which has

to relay ⌦
✓

n
1
2
�✏

dc

◆

connections. For the constant rate links,

the rate per source-destination pair is upper bound by R(n) =

O
⇣

d
c

n� 1
2+✏
⌘

, which leads to the following main result.



Theorem 1 (Long hop). For the long hop strategy discussed
in this section, the per source-destination rate is

R(n) = O
⇣

 (n)
2
↵n� 1

2+✏
⌘

. (11)

Remark 2 (Scalability under long-hop strategy). From Theo-
rem 1, it is clear that in order to achieve R(n) = O(1), we
need  (n) = ⌦(n

↵
4 �✏

), which for a vanishingly small ✏ and
↵ > 2 is always higher than

p
n. In fact, for ↵ = 4, we need

to scale the number of antennas linearly with n.

IV. SHORT HOP: SPATIAL MULTIPLEXING

In this section, we consider the other extreme where the
data for each source-destination pair is communicated through
a series of short hops. By short hop, we specifically refer
to the communication link between two “neighboring” nodes,
each lying in the two consecutive small squares in Fig. 1. In
the context of classical single-antenna wireless networks, it
is well known that this strategy achieves R(n) = ⌦

⇣

n� 1
2

⌘

.
Interested readers should refer to [3], which first studied such
scaling results, or to [12] for a more pedagogical treatment
of this topic. A natural question to ask now is what happens
when these short hops are MIMO links capable of transmitting
multiple independent streams by spatial multiplexing. If the
number of streams remains constant independent of n, this
does not affect the scaling results. However, if they scale up
as ⌦(

p
n), it is clearly possible to achieve R(n) = ⌦(1).

Therefore, the goal is to find  (n) which enables each short
hop MIMO link to achieve rate, say R

sh

(n), of ⌦(
p
n).

The main challenge in analyzing R
sh

(n) is the presence of
LoS interference originating from other simultaneous MIMO
transmissions. A closely related problem was recently studied
in the literature as a part of the hierarchical cooperation
strategy for ad hoc networks, where one of the intermediate
steps is to derive the rate achievable by a distributed MIMO
transmission in the presence of interference from other si-
multaneous MIMO transmissions [5]. While the procedure to
handle this interference under i.i.d. MIMO channels is well
understood, it is not the case when the interfering MIMO links
are LoS [7], [8]. This problem is rigorously treated in [7],
where the scaling of distributed MIMO link rate is derived
by explicitly considering LoS MIMO interfering links, see [7,
Lemma 2]. In this section, we take an alternate route and
study the scaling of E[R

sh

(n)], where E[·] is over the antenna
locations. We show that  (n) =

p
n is sufficient to achieve

E[R
sh

(n)] = ⌦(
p
n). Our analysis is considerably simpler and

involves a direct bound on the interference power, reducing the
problem to finding the spatial DoFs of a single LoS MIMO link
in isolation, which is given by (1). We first prove the following
intermediate result. The proof is given in Appendix B.

Lemma 2. For any continuous random variable D � 0

lim

 (n)!1
E [exp (�j2⇡D (n))] = 0. (12)

We now enrich our notation to study R
sh

(n). Assume
c
p
5  d

max

so that each short-hop achieves full spatial
DoF in the absence of interference. Denote the LoS MIMO
channel of the desired link by H and from ith interferer to

the desired receiver by H(i). Similarly, denote the transmit
symbol of the desired and ith interfering transmitters by x
and x(i), respectively. We further assume that each transmit-
ter distributes equal power across antennas, i.e., E[xx†

] =

E[x(i)x(i)†
] =

P
 (n)I. For worst case analysis, we assume

all the nodes are transmitting. We could have used typical
time-division-multiple-access (TDMA) arguments to control
interference temperature, e.g., see [5], but this does not affect
our scaling results because of the bounded pathloss model.
Denoting the set of interferers by I, and the noise vector by
z, the received signal at the desired receiver is

y = Hx+

X

i2I
H(i)x(i)

+ z, (13)

and the achievable rate can be expressed as

R
sh

(n) � log det

✓

I +
P

 (n)
R�1HH†

◆

, (14)

where R is the covariance matrix of noise-plus-interference
observed at the desired receiver and is given by

R = I+
P

 (n)

X

i2I
H(i)H(i)†. (15)

Since the antenna locations of the interferers only affect (14)
through R, by Jensen’s inequality we have

E[R
sh

(n)] � log det

✓

I +
P

 (n)
E[R]

�1HH†
◆

, (16)

where the expectation is with respect to the antenna locations.
Now the goal is to upper bound E[R], which is

E[R] = I+
P

 (n)

X

i2I
E
h

H(i)H(i)†
i

, (17)

where the (k,m)

th element of H(i)H(i)† is
 (n)
X

l=1



min

⇢

1,
⇣

d(i)
⌘�↵

2

��

2

e�j2⇡d(i)
kl  (n)ej2⇡d

(i)
ml (n). (18)

Taking expectation in (18), using Lemma 2 for large  (n),
and substituting the result in (17), we get

E[R] =

 

1 +

X

i2I
P



min

⇢

1,
⇣

d(i)
⌘�↵

2

��

2

!

I. (19)

A simple counting argument gives the following upper bound

E[R] 
 

1 + 8P + 8c�↵P

1
X

i=2

i(i� 1)

�↵

!

I, (20)

where the summation
P1

i=2

i(i�1)

�↵ 
P1

i=2

i1�↵ is clearly
convergent for ↵ > 2. Therefore E[R]  qI, where q is a
constant independent of n. Substituting it back in (16), we get

E[R
sh

(n)] � log det

✓

I +
P

q (n)
HH†

◆

(a)
= ⌦( (n)), (21)

where (a) follows by (1). This leads to our second main result.

Theorem 2 (Short hop). For the short hop strategy discussed
in this section,  (n) =

p
n achieves E[R(n)] = ⌦(1), where

the expectation is over antenna locations.



Remark 3 (Scalability and achievability). First, comparing
Theorems 1 and 2, we note that short hop strategy is signif-
icantly better for network scalability. While for any ↵ > 2 it
requires only  (n) =

p
n, the antenna requirement in long

hop is always higher and keeps increasing further with ↵.
Second, strictly speaking, Theorem 2 is not enough to claim
achievability for any given realization of antenna locations. In
addition to the achievability proof in [7, Lemma 2], another
worthwhile direction for future investigation consistent with
Theorem 2 is to use recent results of [10] on the spectral
radius of a LoS MIMO channel to directly bound R from
above instead of invoking Jensen’s inequality to bound E[R].

V. CONCLUSION

In this paper we studied the scalability of a wireless
backhaul network by modeling it as an extended network
with multi-antenna nodes in the LoS environment. Accounting
for the fundamental limits on the DoF of a LoS MIMO
channel, we compared two competing strategies in terms of
the antennas per node required to make this network scalable.
While the first minimizes the number of hops by forming thin
beams and ideally achieving full power gain over each hop,
the other communicates data from source to its destination
through many short hops, each achieving full multiplexing
gain. Although it may seem intuitive at first to minimize
the number of hops by forming narrow beams and hence
minimizing interference to neighboring nodes, we show that
the short hop strategy is significantly better.

This work has numerous extensions. For instance, with
these new found insights it is now important to establish
information-theoretic performance bounds for this new regime.
In the context of a practical deployment, it is important to
study hybrid networks, where some nodes, representing legacy
BSs, additionally have fixed capacity wired backhaul.

APPENDIX

A. Proof of Lemma 1
Recall the system setup depicted in Fig. 1, where the node

locations are modeled by a perturbed lattice. Let (Xi, Yi) 2 R2

denote the location of the node in the ith small square, where
the ordering of squares is arbitrary. Let Xi = X

Li + X
Pi ,

where X
Li is the x coordinate of the lattice point and � c

2


X

Pi  c
2

denotes the perturbation along x-axis. Let the source-
destination separation of a randomly chosen pair be DBn .
Assuming the transmitter and receiver are respectively located
in the ith and kth small squares, the cumulative distribution
function (CDF) of DBn is P(DBn  d) =

P
�

(Xi �Xk)
2

+ (Yi � Yk)
2  d2

�

 P
�

(Xi �Xk)
2  d2

�

= P (�d+Xk  Xi  d+Xk)

= P (�d+Xk  X
Li +X

Pi  d+Xk)

(a)
 P

⇣

�d+Xk � c

2

 X
Li  d+Xk +

c

2

⌘

(b)
 2d+ c

c
p
n

,

where (a) follows from � c
2

 X
Pi  c

2

, and the inequality
in (b) is because we ignored the restrictions on the range of
X

Li . Clearly, for ✏ > 0, limn!1 P(DBn  n
1
2�✏

) = 0, from
which the result follows.

B. Proof of Lemma 2

First note that the exponential term can be equivalently
expressed as exp (�j2⇡D (n)) = exp (�j2⇡X), where
X = D (n) mod 1, which clearly lies in [0, 1]. It is enough
to show that as  (n) grows large, X tends to a uniform
distribution between [0, 1]. Therefore for x 2 [0, 1]

P(X  x) =

1
X

i=0

P(i  D (n)  i+ x) (22)

=

1
X

i=0

P
✓

i

 (n)
 D  i+ x

 (n)

◆

(23)

(a)
= x

1
X

i=0

1

 (n)
fD

✓

i

 (n)

◆

= x, (24)

where (a) and its subsequent step hold under  (n) ! 1 and
fD(·) denotes the probability density function of D. Clearly
X is uniformly distributed in [0, 1].
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[9] M. Desgroseilliers, O. Lévêque, and E. Preissmann, “Spatial degrees of
freedom of MIMO systems in line-of-sight environment,” in Proc., IEEE
Intl. Symposium on Information Theory, Istanbul, Turkey, Jul. 2013.

[10] ——, “Partially random matrices in line-of-sight wireless networks,” in
Proc., IEEE Asilomar, Pacific Grove, CA, Nov. 2013.

[11] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Millimeter wave beamforming for wireless backhaul and
access in small cell networks,” IEEE Trans. on Commun., vol. 61, no. 10,
pp. 4391 – 4403, Oct. 2013.

[12] M. Franceschetti and R. Meester, Random Networks for Communication:
From Statistical Physics to Information Systems. Cambridge University
Press, 2007.

[13] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE Access,
vol. 1, pp. 335 – 349, 2013.

[14] A. Bleicher, “The 5G phone future: Samsung’s millimeter-wave
transceiver technology could enable ultrafast mobile broadband by
2020,” IEEE Spectrum, vol. 50, no. 7, pp. 15 – 16, Jul. 2013.

[15] W.-Y. Shin, S.-W. Jeon, N. Devroye, M. H. Vu, S.-Y. Chung, Y. H. Lee,
and V. Tarokh, “Improved capacity scaling in wireless networks with
infrastructure,” IEEE Trans. on Info. Theory, vol. 57, no. 8, pp. 5088 –
5102, Aug. 2011.


