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Abstract—In this paper, we develop a general mathematical
framework to incorporate dynamic spectrum access in a mul-
tiuser MIMO network. This framework is particularly helpful in
computing the maximum achievable system capacity of a result-
ing multiple-band multiuser MIMO network. The mathematical
formulation to maximize the system capacity is shown to be quite
similar to that of a well studied single-band multiuser MIMO
network. It is further shown that the capacity maximization
problem is equivalent to finding the optimal eigenvalues of
the input symbol covariance matrices of the users in each
frequency band. Due to the dependence of the eigenvalues on the
physical characteristics of the system, such as orientation of the
antennas and the channel conditions, it is difficult to achieve their
optimal values in general. Because of this difficulty in achieving
the optimal capacity, we also consider the suboptimal MIMO
techniques (specifically beamforming) and study their capacity
performance in a multiple-band multiuser MIMO system.

Index Terms—Cognitive radio, dynamic spectrum access, dy-
namic spectrum allocation, multiuser MIMO network, beam-
forming, non-convex non-linear programming.

I. INTRODUCTION

THE most important goals in spectrum assignment are
avoiding interference and maximizing utilization. The

traditional solution to this problem is to divide the spectrum
into several non-overlapping frequency bands and assign each
band to a wireless user/technology. Though this static assign-
ment avoids interference between systems, it doesn’t maximize
spectrum utilization. Federal Communications Commission
(FCC) measurements have clearly indicated that a significant
number of licensed bands remain unused or underutilized for
more than 90% of the time [1]. The high variability in the
spectrum usage over frequency, time and space has attracted
the interest of wireless communications community to develop
efficient spectrum management methods. This has led to a
flurry of research activity around the concept of dynamically
utilizing the available spectrum [2]-[4]. The general idea is to
equip a wireless device with “cognitive” capabilities so that
it can adapt to the changing electromagnetic environment in
order to maximize the utilization of the available resources
[5]. Many terms are coined for variants of this basic idea
which are well explained in [2]. In this paper, we specifically
assume the overlay or the opportunistic dynamic spectrum
access approach [5].

The opportunistic dynamic spectrum access approach (re-
ferred henceforth as DSA) is a hierarchical approach where
the spectrum is available to a secondary user (SU) only when

the primary user (licensee) is not transmitting in that frequency
band. The main concern in DSA is to first identify the available
frequency bands by sensing the spectrum and then to allocate
them to the SUs. In this paper, we assume that we have perfect
knowledge of the available frequency bands and will focus on
spectrum sharing between SUs. Interested readers can refer to
[6] for a discussion of various spectrum sensing techniques
and to [7] for the benefit of cooperative spectrum sensing
in cognitive radios. After identifying the available frequency
bands, these are then allocated to various SUs with two
primary goals: maximum spectrum utilization and fairness.
These two goals lead to a number of utility (cost) functions
that can be optimized for specific network applications. Some
cost functions concentrate more on maximizing the utilization
and others give more emphasis on fairness. Some examples of
these cost functions for single-antenna systems can be found
in [8], [9].

The problem of dynamic spectrum allocation to achieve the
globally optimal system capacity in a single antenna system
is known to be NP-hard [10]. In this case, a centralized
server obtains information about the topology along with the
user demand and assigns frequency bands to various SUs in
order to maximize the spectral utilization. If the topology and
user demand is fixed, these calculations can be performed
only once to obtain conflict-free spectrum assignments that
closely approximate the global optimum. If however, they are
variable, a centralized system will have to find the optimal
frequency allocation after each change, which adds significant
computational and communication overhead. To overcome this
problem, several central and distributed suboptimal spectrum
allocation techniques are discussed in the literature [11]-[13].
In some distributed techniques, each user tries to optimize its
own utility function and requires no collaboration from other
users. In other distributed techniques, users group themselves
into small groups based on geography or similarities in the
technologies being used and optimize the spectrum allocation
within the group to approximate the global optimum.

As is evident from the above discussion, the problem of op-
timal frequency allocation for SUs employing a single antenna
is well-defined and solved from different perspectives in the
literature [2]-[13]. The extension of this problem from single-
antenna systems to multiple-antenna systems is not straight
forward because of the presence of an additional degree of
freedom. The global optimum of system capacity in this case
can be achieved only when both the spectral and spatial (due



to the presence of multiple-antennas) domains are optimized
simultaneously. It should be noted that in the most general
system model, time is also considered as a transmit degree of
freedom in addition to space and frequency. It is not taken
into consideration in the present discussion because we are
assuming that all the SUs are concurrently transmitting.

The problem of incorporating DSA in a multiuser MIMO
network is not well studied and is the main focus of this
paper. We specifically develop a complete mathematical for-
mulation to compute the maximum achievable capacity of
a Multiple Band Multiuser MIMO (referred henceforth as
MBMM) network. By multiple band system, we mean that
multiple frequency bands are available for the SUs. We further
show that this problem is equivalent to finding the optimal
eigenvalues of the input symbol covariance matrices of the
SUs in each frequency band. Due to the dependence of the
eigenvalues on the physical characteristics of the system, such
as orientation of the antennas and the channel conditions,
it is difficult to achieve their optimal values in general.
Because of this difficulty, it is necessary to investigate the
system capacity of MBMM networks for sub-optimal MIMO
techniques. This will also help us in identifying techniques
that closely approximate the optimal capacity in given channel
conditions. In particular, in this paper we study the sub-optimal
approach of beamforming. We also show that the mathematical
formulation of the DSA problem for MBMM networks is quite
similar to that of the Single Band Multiuser MIMO (referred
henceforth as SBMM) networks. This fact is quite important
because it allows us to easily extend the results and algorithms
proposed for the well-studied SBMM systems to cognitive
MIMO systems.

In [14], it is shown that the sum of the mutual information
of SUs in a SBMM network is neither a convex nor a concave
function. It is thus very difficult to find the global maxi-
mum of this function analytically. Many local optimization
techniques have been proposed in the literature to solve this
problem [15], [16]. Though these approaches can quickly
find a locally optimal solution, they cannot guarantee the
global optimum for non-convex problems. Recently, a global
optimization method was proposed to solve this problem
for SBMM networks [17]. This method is based on the
branch and bound framework, coupled with the reformulation-
linearization technique and guarantees a globally optimal
solution [18]. Because of the established similarity in the
mathematical formulations, the algorithm can be extended
(with suitable modifications) to compute the optimal system
capacity of a MBMM network. The working of this algorithm
is briefly explained in a later section.

The present problem of finding the maximum achievable
capacity is also important because it provides a benchmark
for evaluating the performance of decentralized techniques
for incorporating DSA in MBMM networks. One such de-
centralized technique is proposed in [20], where each SU
utilizes a transmission strategy which maximizes its own utility
function. In the multiuser case, each SU will dynamically react
to the strategies adopted by other users and the equilibrium
achieved is shown to coincide with the Nash equilibrium [20].

The remainder of this paper is organized as follows. In
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Fig. 1. System model depicting various Tx-Rx pairs.

Section II, the system model is explained along with all of the
underlying assumptions. The problem of incorporating DSA
in multiuser MIMO is discussed in Section III. Specifically,
we develop a mathematical formulation of the optimization
problem to maximize the capacity and show that it is quite
similar to that of the SBMM network. Section IV deals with
the problem of maximizing the system capacity when the
SUs are employing beamforming both at the transmitter and
receiver. Numerical results are presented in Section V. The
paper is concluded in Section VI.

II. SYSTEM MODEL

A. Assumptions

Several assumptions are made in the analysis to facilitate
the system layout. Firstly, it is assumed that no primary user
is present in the frequency bands of interest and they are thus
available for allocation to the SUs. Secondly, we assume that
all the SUs consist of a transmitter (Tx) comprising of nt

transmitter antennas and a receiver (Rx) comprising of nr

receive antennas. In this peer-peer network model each Tx
has only one intended Rx and acts as an interferer for the
rest of the SUs. Further, we make the Gaussian interference
channel assumption in which interference and noise is modeled
as being Gaussian distributed. An example of the basic system
setup is shown in Fig. 1. Thirdly, we assume that the available
spectrum is divided into a countable number of orthogonal
frequency bands. SUs are not restricted to transmit over a
single band and can distribute transmit power over multiple
frequency bands. Each Tx is assumed to have a total maximum
transmit power of Pmax over all frequency bands and all
nt transmit antennas. It is further assumed that all the users
are sharing complete information and the system is centrally
optimized to find the maximum sum of the mutual information.
In this case, a centralized server obtains information about the
topology and determines the optimal power allocation across
both antennas and frequency bands for all SUs.



B. System Layout

The system layout is shown in Fig. 1. The maximum
allowable distance between a Tx/Rx pair is denoted by dmax.
dmax is assumed to be a system constant and is defined such
that the minimum average received SNR per receive antenna is
1 dB. The density of the SUs is handled by defining a Multi-
User Interference (MUI) factor. MUI represents the expected
number of Rx nodes within a circle of radius dmax centered at
any Tx node assuming a constant density. Increasing the MUI
factor increases the density of interferers and hence increases
the mutual interference. For a fixed MUI and dmax value, the
density (µ) in terms of users per unit area can be evaluated as:
µ = MUI/πd2

max. The complete area of interest is assumed
to be a square. To place N users within a square with density
µ, the square should have an area of N

µ , and hence a side

length of
√

N
µ . For each analysis, we place a number of Rx

units uniformly distributed in the chosen square area. Each
Tx is then placed in the circle of radius dmax centered at the
corresponding Rx, as shown in Fig. 1.

C. Mathematical Notations

Boldface is used to denote matrices and vectors. For a ma-
trix A, A† denotes the conjugate transpose and AT denotes the
transpose. Tr{A} denotes the trace of the matrix A. I denotes
the identity matrix, whose dimensions can be determined from
the context. A Â 0 represents that A is Hermitian and positive
semidefinite. The scalar am,n represents the entry in the mth-
row and nth-column of A. For a complex scalar a, <(a) and
=(a) represent the real and imaginary parts of a, respectively,
and a′ represents the conjugate of a. diag{A} denotes a vector
of the diagonal elements of A and diag{A} º 0 means that
all the diagonal elements of A are non-negative.

III. DSA IN MULTIUSER MIMO: MAXIMUM CAPACITY

Our goals in this section are to incorporate DSA in multiuser
MIMO and to formulate a mathematical problem to determine
the maximum sum of the mutual information of these inter-
fering SUs.

A. Defining the Variables

We consider a network consisting of N mutually interfering
SUs, which are indexed by 1, 2, . . . , N . In this analysis,
it is assumed that the transmitters have full channel state
information. Let the available spectrum be divided into m
frequency bands, indexed by 1, 2, . . . , m. Let us denote the
MIMO link from the Tx of the jth SU to the Rx of the ith

SU to be Lji. Let the matrix Hl
ji ∈ Cnr×nt denote the channel

matrix of link Lji in the lth frequency band. Let the matrix Ql
i

be the covariance matrix of the zero mean Gaussian transmit
symbol vector xl

i of the ith SU in lth frequency band, i.e.,
Ql

i = E{xl
i.x

l†
i }. Further denote ρl

ji as the signal-to-noise
ratio per unit transmit power in frequency band l if j = i,
or the interference-to-noise ratio per unit transmit power if
j 6= i. It is also assumed that each Tx in the network is
subject to the maximum transmit power constraint, i.e., the
total power transmitted over nt transmit antennas and all m

frequency bands should be less than or equal to Pmax. Let
Rl

i represent the covariance matrix of the interference plus
noise observed at the ith Rx node in the lth frequency band.
Assuming interference plus noise to be Gaussian distributed,
it can be computed as:

Rl
i =

N∑

j=1
j 6=i

ρl
jiH

l
jiQ

l
jHl†

ji + I. (1)

B. Capacity of a Single Band Multiuser MIMO Network

To begin, we examine the capacity of a single MIMO
link in a SBMM network. Since m = 1 in this case, we
drop the superscript l in all the variables defined above
for simplicity. As discussed in [14], [17], the information
theoretic capacity of this single MIMO link can be computed
as Ci = log2 det(I + ρiiR−1

i HiiQiH
†
ii). Now since Qi Â 0,

it can be expressed as Qi = UiΛiU†i , where Λi is the
diagonal matrix of the eigenvalues of Qi and Ui is the unitary
matrix with columns consisting of the eigenvectors of Qi.
Defining Ĥii = HiiUi, the capacity expression can be written
as Ci = log2 det(I + ρiiR−1

i ĤiiΛiĤ
†
ii). As Qi Â 0, it

leads to the following two very important properties which
are instrumental in the further simplification of the problem
formulation:

1) The distributions of Ĥii and Hii are same [14].
2) All the eigenvalues of Qi, i.e. all the diagonal elements

of Λi, are real and positive.
Due to these properties, it is sufficient to consider Λi instead of
Qi in the further discussion. We now define H̃ii = R−1/2

i Ĥii

and the expression to find capacity is further simplified to:

Ci = log2 det(I + ρiiH̃iiΛiH̃
†
ii). (2)

To maximize the sum of the capacities of this N -user SBMM
network, we need to find the optimal real diagonal matrices
Λi for all the N SUs. The problem can be mathematically
formulated as:

max
∑N

i=1 Ci

s.t. Ci = log2 det(I + ρiiH̃iiΛiH̃
†
ii)

H̃ii = R−1/2
i Ĥii

Ri =
∑N

j=1
j 6=i

ρjiĤjiΛjĤ
†
ji + I

Tr{Λi} ≤ Pmax, diag{Λi} º 0, 1 ≤ i ≤ N.

(3)

C. Incorporating DSA in Optimal Multiuser MIMO

Using the framework developed in the previous subsections,
we now incorporate DSA in the multiuser MIMO network and
mathematically formulate the problem of finding the maximum
capacity of the resulting MBMM network. Here also, we begin
our discussion by analyzing the capacity of a single MIMO
link which can be computed as Ci =

∑m
l=1 log2 det(I +

ρl
ii(R

l
i)
−1Hl

iiQ
l
iH

l†
ii). As explained in the previous subsection,

Ql
i being positive semidefinite, i.e. Ql

i Â 0, can be expressed
as Ql

i = Ul
iΛl

iU
l†
i . Defining Ĥ

l

ii = Hl
iiU

l
i, the capacity



of the single MIMO link in this case can be written as
Ci =

∑m
l=1 log2 det(I + ρl

ii(R
l
i)
−1Ĥ

l

iiΛ
l
iĤ

l†
ii). We simplify

the expression by defining H̃
l

ii = (Rl
i)
−1/2Ĥ

l

ii. The single
link capacity can now be expressed as

Ci =
m∑

l=1

log2 det(I + ρl
iiH̃

l

iiΛ
l
iH̃

l†
ii). (4)

Equation (4) can be further simplified by defining the follow-
ing higher dimensional matrices:

Λ̃i =




Λ1
i 0 . . . 0

0 Λ2
i . . . 0

...
. . .

...
0 0 . . . Λm

i


 , (5)

H̃ii =




√
ρ1

iiH̃
1

ii 0 . . . 0

0
√

ρ2
iiH̃

2

ii . . . 0
...

. . .
...

0 0 . . .
√

ρm
ii H̃

m

ii




. (6)

Using these matrices, (4) can be written as

Ci = log2 det(I + H̃iiΛ̃iH̃
†
ii). (7)

To maximize the sum of the capacities of all the SUs in
the present system, we need to find m optimal diagonal
matrices Λl

i for each SU or in other words find the optimal
ntm diagonal elements of Λi for each SU. The mathematical
formulation of this optimization problem is as follows:

max
∑N

i=1 Ci

s.t. Ci = log2 det(I + H̃iiΛ̃iH̃
†
ii)

Λ̃i, H̃ii defined by equations (5), (6)
Tr{Λ̃i} ≤ Pmax, diag{Λ̃i} º 0, 1 ≤ i ≤ N.

(8)

Comparing (3) and (8), we can easily conclude that the
mathematical formulation of maximizing the system capacity
of the MBMM network is exactly same as that of the SBMM
network. This fact allows us to extend all the results and
algorithms proposed in the literature for the latter. It is however
important at this point to note that the computational complex-
ity of (8) is roughly m times of that of (3). This is because
in (3), optimization is to be performed over the eigenvalues
of just one signal covariance matrix for each SU, whereas in
(8), optimization has to be performed over m such covariance
matrices (for each SU). Further, this optimization problem is
shown to be neither a concave nor a convex problem and hence
it is difficult to compute the globally optimum solution for
this problem analytically [14]. Even the global optimization
algorithms proposed to solve (3) are not easy to extend to the
present problem because of their slow convergence and the
enormous complexity of the problem especially for a large
number of users and/or frequency bands. One such algorithm
proposed in [17] uses the reformulation linearization technique
coupled with the branch and bound framework to arrive at
the global optimal solution. We are currently working on

extending this algorithm to the current problem with suitable
modifications, especially in the complexity aspects.

The basic idea of this algorithm is to construct a linear
programming (LP) relaxation for the original nonlinear prob-
lem. The LP is then used to compute the global upper bound
for the original nonlinear problem. This relaxed solution can
either be a feasible or non-feasible solution to the original
problem. If this solution is not feasible, it can be used as
a starting point to find a feasible solution to the original
nonlinear problem. This feasible solution will provide a global
lower bound to the problem. Once the upper and lower
bounds are computed, the branch and bound procedure can
be applied to tighten the bounds and eventually arrive at a
near optimal solution within the given approximation error. In
addition to this, some other interesting non-convex nonlinear
programming algorithms like interior point algorithms and
sequential quadratic programming algorithms are also worth
investigating in the light of the current problem [21], [22].

The mathematical framework developed above provides
maximum achievable system capacity in the given channel
conditions when DSA is incorporated in the multiuser MIMO
network. As explained above, the problem of maximizing the
capacity is reduced to finding the optimal eigenvalues of the
input symbol covariance matrices of the SUs in each available
frequency band. However, in practice, the optimal solution
may not be practical. It is therefore necessary to investigate
the capacity of multiband multiuser systems employing sub-
optimal MIMO techniques to identify the techniques which
approximate the optimal capacity in the given channel condi-
tions. This issue is discussed in detail in the next section in
the light of generalized beamforming.

IV. INCORPORATING DSA WITH OPTIMAL BEAMFORMING

In this section, we investigate the problem of incorporating
DSA in the multiuser MIMO system where the Tx unit and Rx
unit of each SU employs beamforming. The goal in optimal
beamforming is to find the optimal frequency allocation and
the optimal Tx and Rx beamforming weights to maximize the
sum of the capacities of all the SUs. It is important to note
here that optimal beamforming in cognitive MIMO exploits
only a single channel mode for transmission in each frequency
band and other modes remain unused. As discussed later in
this section, this constraint can be easily incorporated in the
general MIMO capacity optimization problem (8) to derive the
mathematical formulation of a general beamforming capacity
problem.

We start the problem formulation by defining the new
variables required. Let bl

Ti
∈ C1×nt and bl

Ri
∈ C1×nr be the

beamforming weights of the Tx and Rx, respectively, of the
ith SU in the lth frequency band. Let f l

i , for i ∈ {1, 2, . . . N}
and l ∈ {1, 2, . . . m}, be the power transmitted by the ith user
in the lth frequency band. Total power transmitted over all the
Tx antennas by the ith SU is then

∑m
l=1 f l

i ≤ Pmax. We now
examine the transmit symbol covariance matrix of ith SU in



the lth frequency band, which is given by:

Ql
i = f l

i




bTi1b
′
Ti1

bTi1b
′
Ti2

. . . bTi1b
′
Tint

bTi2b
′
Ti1

bTi2b
′
Ti2

. . . bTi2b
′
Tint

...
. . .

...
bTint

b′Ti1
bTint

b′Ti2
. . . bTint

b′Tint


 . (9)

It is evident from (9) that all the columns of Ql
i are linearly

dependent and hence it has a single non-zero eigenvalue and
the rest is null space. Since Ql

i Â 0, it can be expressed
as Ql

i = Ul
iΛl

iU
l†
i , where Λl

i is a diagonal matrix of the
eigenvalues of Ql

i with only one of them being non-zero.
Assuming that the norm of beamforming vector is one, it can
be easily shown that the only nonzero eigenvalue of Λl

i is f l
i .

Physically, it establishes that each SU uses only one channel
mode in each frequency band for transmission. To incorporate
this fact in the general cognitive MIMO capacity optimization
problem (8), let us define a diagonal matrix Γl

i with all the
diagonal elements equals to zero except one, which is unity. To
simplify the formulation, we now define a higher dimensional
matrix Γ̃i as:

Γ̃i =




Γ1
i 0 . . . 0

0 Γ2
i . . . 0

...
. . .

...
0 0 . . . Γm

i


 . (10)

By incorporating Γ̃i in (8), the mathematical formulation of
the optimal beamforming capacity problem can be written as:

max
∑N

i=1 Ci

s.t. Ci = log2 det(I + H̃iiΓ̃iΛ̃iH̃
†
ii)

Λ̃i, H̃ii, Γ̃i defined by (5), (6), (10)
Tr{Γl

i} = 1, diag{Γl
i} ∈ {0, 1},∀ i, l

T r{Λ̃i} ≤ Pmax, diag{Λ̃i} º 0, 1 ≤ i ≤ N.

(11)

After developing the required mathematical framework, we
now present some numerical results in the next section.

V. NUMERICAL RESULTS

As discussed earlier, the problem of finding the optimal
system capacity (sum rate) of a general MBMM network is
neither a concave nor a convex problem and hence it is difficult
to compute the globally optimum solution analytically. In this
work, we employ a gradient based search method to solve both
optimal MIMO and optimal beamforming capacity problems
of a MBMM network. Though gradient-based search methods
do not guarantee the globally optimal solution for non-convex
problems, near optimal solutions can be reached by solving
the problem multiple times with random starting points and
combining the results. We are currently also developing a
global optimization algorithm that would guarantee ε-optimal
solution for such problems based on [17]. We will present this
work in a future publication.

In addition to optimal MIMO and optimal beamforming,
we also consider three special cases, viz., no interference,
maximum equal power allocation and maximum power beam-
forming. In the no interference case, we assume that each SU
is isolated from all the other SUs. This is a hypothetical case in
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Fig. 2. Comparison of the system capacity results in a high interference
scenario (MUI = 5).
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Fig. 3. Comparison of the system capacity results in a low interference
scenario (MUI = 1).

the current setup and is just meant to upper bound the optimal
capacity (sum-rate). In the maximum equal power allocation,
we assume that each SU transmits Pmax/mnt power over
each Tx antenna in each frequency band. Since this is not (in
general) the optimal power allocation solution, this serves as a
lower bound to the optimal MIMO capacity. In the maximum
power beamforming case, we first choose an optimal channel
mode in each frequency band and then transmit Pmax/m
power in each chosen channel mode. Since this is a special
case of beamforming and is not the optimal solution in general,
this will act as a lower bound to the optimal beamforming
capacity.

The channel model is assumed to be a combination of large
scale and small scale fading components. On the large scale,
we assume that channel suffers from an exponential path loss
with a path loss factor of 3 and from log-normal shadowing
with a standard deviation of 1 dB. Small scale fading effects
are modeled as Rayleigh distributed. Antennas at both the Tx



and Rx of all the SUs are assumed to be independent in terms
of small-scale fading but perfectly correlated in terms of log-
normal shadowing. A high interference scenario is simulated
by setting the MUI factor to be 5. The system capacity results
for this case are presented in Fig. 2. Similarly, the system
capacity results for a low interference scenario (MUI = 1)
are presented in Fig. 3. We should remind the reader that the
system capacity is defined as the sum of the link capacities of
all the SUs in the network.

The importance of adopting an optimal MIMO transmission
strategy can be gauged by comparing the optimal MIMO
capacity results with the sub-optimal techniques such as beam-
forming and equal power MIMO. Numerical results presented
in Fig. 2 and Fig. 3 highlight the importance of choosing
the optimal transmit power and optimally distributing it over
various channel modes in each band. The loss in system
capacity due to interference can be evaluated by comparing
the optimal MIMO capacity results with “no-interference”
capacity results. As expected, the capacity loss is higher in
high interference scenarios (Fig. 2) as compared to the low
interference scenario (Fig. 3). The loss in system capacity also
increases with the increase in number of SUs (due to increase
in net interference).

Another important result can be drawn by comparing opti-
mal beamforming capacity with the optimal MIMO capacity.
Optimal beamforming capacity is observed to be closer to
the optimal MIMO capacity in a high interference scenario
than in a low interference scenario. This means that as the
interference increases, it is optimal to use fewer channel modes
for transmission. An analogous result for SBMM networks
is discussed in [16], where it is proved that it is optimal to
transmit over a single channel mode in a high interference
scenario.

VI. CONCLUSIONS

In this paper, we have addressed the problem of incorporat-
ing DSA in a multiuser MIMO network. The mathematical
framework developed is particularly helpful in computing
the maximum achievable capacity (sum-rate) of a MBMM
network. We have shown that this problem of capacity maxi-
mization is equivalent to finding the optimal eigenvalues of
the input symbol covariance matrices of all SUs in each
frequency band. We have further shown that the mathematical
formulation of this optimization problem is quite similar to that
of the well studied SBMM network. The importance of adopt-
ing an optimal MIMO transmission strategy is highlighted
by comparing the optimal MIMO capacity results with the
known suboptimal MIMO techniques, such as beamforming
and maximum equal power transmission. We have further
shown that it is optimal to transmit over fewer channel modes
over each frequency band when interference increases. This
problem of MBMM network sum-rate maximization, being
non-convex and nonlinear, is difficult to solve analytically.
We are currently developing a provably global optimization
algorithm (based on [17]) to solve this problem and will
include it in a future publication.
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