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Abstract— A quadrant localized lattice decoding algorithm for
the golden codes is proposed in this paper that requires very low
computational complexity as compared to the sphere decoder.
The proposed algorithm is mainly based on the idea of utilizing
its directional attributes and localizing the search in a single
quadrant of the multi-dimensional space in which the received
point lies. We specifically apply this algorithm to the conventional
sphere decoder and analyze the performance of the proposed
decoder in comparison to the latter one. The adopted approach,
however, is sufficiently general to be applied to any popular
decoding algorithm for reducing its computational complexity.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have at-
tracted the attention of the communications community due to
their huge capacity and improved transmission reliability. The
most important contributor to the reliable wireless transmission
in the MIMO systems is their ability to provide space diversity
and it is important to develop algorithms that take advantage
of this fact. Many algorithms with reasonable complexity
and performance have been proposed, for example diversity
techniques and diversity combining methods. Among them, the
most successful one is Space Time Codes (STC) [1]. In STCs,
the signal processing at the transmitter is done not only in the
time dimension, but also in the spatial dimension. Redundancy
is added coherently to both the dimensions. For efficient
practical implementation of STCs, the receiver complexity
plays a major role. Among the most popular techniques, max-
imum likelihood (ML) decoding yields the best performance,
but is often considered to be practically infeasible due to
high computational complexity in MIMO systems with large
number of antennas and high-order constellations.

To lower the complexity, the so-called lattice theory is
applied to encode and decode the signals in the multiple-
antenna digital transmission systems. The most popular lattice
decoding algorithm, also termed as sphere decoding algorithm,
has near ML performance with reasonably low complexity. It
is based on the Fincke and Pohst’s strategy [2]. However, the
approach has limited applications in practical MIMO systems
due to its cubic complexity [3]. Many attempts have been made
thereafter to reduce the complexity of the lattice decoders
further. In one such attempt [4], it has been shown that
Schnorr-Euchner strategy is computationally more efficient
than the conventional Pohst algorithm. Some other techniques,
such as thresholding [5], exploits the tree search features of the

conventional sphere decoder to reduce its complexity. Despite
these efforts, the decoder complexity still remains to be the
bottle-neck for the implementation of the MIMO systems.

In this paper, we propose a new algorithm, which exploits
the directional attributes of the received points to localize the
search in a single quadrant of the multi-dimensional space and
hence reduces the computational complexity of the existing
lattice decoding algorithms significantly. We specifically apply
this algorithm to the conventional sphere decoder and analyze
the performance of the proposed decoder in comparison to
the latter one. The adopted approach, however, is sufficiently
general to be applied to any popular decoding algorithm for
reducing its computational complexity. Note that a full-rate
STC, i.e., the golden code, is used in the encoder of the present
system to exploit its property of being an optimal code in the
Rayleigh fading environment.

II. THE GOLDEN CODE

The encoder of the present system employs golden code,
which is a space-time code for 2×2 coherent MIMO systems.
It is a full rate space-time code with non-vanishing determi-
nant [6]. It encodes four QAM symbols (a, b, c and d) at a time
to be transmitted from two different antennas in two successive
intervals. The codeword X of the golden code is 2×2 complex
matrix of the following form:

X(a, b, c, d) =
1√
5

[
α(a + bθ) α(c + dθ)

ᾱ(γ(c + dθ̄)) ᾱ(a + bθ̄)

]
, (1)

where θ = (1 +
√

5)/2; θ̄ = (1−√5)/2; α = 1 + j(1− θ) =
1 + jθ̄; ᾱ = 1 + j(1− θ̄) = 1 + jθ and γ = j.

The codeword is formed by the combination of four in-
formation symbols which are to be decoded together. Due to
this, the possible number of codewords is large which makes
the exhaustive search through the whole lattice unfeasible and
thus define the bottleneck in the practical implementation of
the MIMO systems. One of the first algorithms to cater this
problem is the sphere decoding algorithm, which is discussed
next.

Note that, to facilitate the sphere decoding, all the modules
of the modeled system are to be implemented in the real
domain [7]. The complex matrices are vectorized by separating
real and imaginary parts and stacking them one above the
other to form a real array. For the purpose of illustration, the
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Fig. 1. Geometrical representation of the lattice, sphere and the received
point.

equivalent 8×1 real vector Xre of the 2×2 complex codeword
X is shown below:

Xre =
1√
5




re(α(a + bθ))
im(α(a + bθ))
re(α(c + dθ))
im(α(c + dθ))

re(ᾱ(γ(c + dθ̄)))
im(ᾱ(γ(c + dθ̄)))

re(ᾱ(a + bθ̄))
im(ᾱ(a + bθ̄))




. (2)

III. SPHERE DECODING ALGORITHM

In the case of independent fading channels with perfect
information of the channel at the receiver, the Maximum
Likelihood (ML) decoding requires the minimization of the
following metric:

m(X|Y, H) = ||Y−HX||, (3)

where X, Y and H are the code word, received point and the
channel matrix, respectively. The dimension of these matrices
is defined by the number of transmit and receive antennas in
the modeled MIMO system. This suggests a straight-forward
solution of calculating the Euclidean distance from all the
possible lattice points and declaring the nearest as the estimate
of the transmitted signal. This is true in principle but can be
computationally very complex when the total number of lattice
points possible is very high (e.g., 48 = 65536 for 16-QAM
information symbols in Golden Code).

As discussed above, the exhaustive search through the whole
lattice {HX} has an exponential complexity and is not a
feasible solution [3]. The first major breakthrough was the
introduction of sphere decoding algorithm, which has a cubic
computational complexity. This algorithm searches through the
lattice to find those points which lie inside the sphere of the
pre-defined radius (r) centered at the received point. In a two-
dimension problem illustrated in Fig. 1, one can easily restrict
the search by drawing a circle around the received signal just
enough to enclose a few lattice points and eliminate the search
of all the points outside the circle. Only the points lying inside
the sphere are taken for further metric calculations to find the
estimate of the transmitted point [7]. Alternatively, only those
points are considered, which satisfy the following equation:

||Yre −HreXre|| ≤ r, (4)

where Yre and Hre are the real vector equivalents of Y and
H respectively. They are calculated by the same procedure as
explained for Xre for the Golden Code.

Though this approach has a much lower computational
complexity than the exhaustive search, it still needs to be
reduced to facilitate the application of the lattice decoders in
the practical MIMO systems.

IV. THE PROPOSED QUADRANT-LOCALIZED SEARCH
ALGORITHM

The proposed quadrant-localized search algorithm takes into
account the directional attributes of the received point to
reduce the computational complexity of the existing decoders
significantly. This is achieved by reducing the number of
lattice points to be considered for the metric calculations by
localizing the search in a single quadrant. For this purpose,
the direction cosines are used to find the angle of the received
vector with all the axis and then deciding the quadrant in which
it lies.

In the present work, the proposed scheme is applied to
the conventional sphere decoder by using the implementation
method introduced in [7]. First, for finding the sphere decoder
bounds, each complex codeword is vectorized into a real
vector by separating the real and imaginary parts of all the
elements of the complex codeword matrix and stacking them
one above the other. Consequently, the lattice {HX} is mapped
into {Hrexre}. Further, the lattice points can be written as the
set {Hrexre = uM}, where M is the lattice generator matrix
and u = (u1, u2 . . . un) ∈ Zn is the integer vector to which
the information bits are mapped. In the case of golden code,
the integer vector u can be directly related to the information
symbols as follows:

u =
[ re(a) im(a) re(b) im(b) re(c) im(c)
re(d) im(d)]. (5)

Physically, the lattice {Hrexre} (denoted henceforth as Φ)
can be thought of as a result of linear transformation defined
by the lattice generator matrix M : Rn → Rn over a cubic
lattice {u}. The problem then can be confined to find a lattice
point nearest to the received point and can be mathematically
expressed as:

min
v∈Φ

||yre − v|| = min
w∈yre−Φ

||w||. (6)

Thus we have to find the shortest vector w in the trans-
formed lattice yre−Φ ∈ Rn as given in [7]. yre can be defined
in terms of the lattice generator matrix as yre = ρM with ρ =
(ρ1, ρ2 . . . ρn) ∈ Rn being the received counterpart of u. The
real vector w is similarly transformed by the lattice generator
matrix as w = ξM with ξ = (ξ1, ξ2 . . . ξn) ∈ Rn being a
real vector. By using the above definitions of ξi, ρi and ui,
we can write ξi = ρi − ui, for i = 1, 2 . . . n. It defines the
translated coordinate axis in the space of cubic lattice {u}. As
a result of this transformation, the sphere of radius r centered
at the received point is transformed to an ellipsoid centered at
origin in the new coordinate system. The general expression
for the range of points lying inside the sphere (and hence the
ellipsoid) can be found in [7].



TABLE I
SUMMARY OF THE QUADRANT-LOCALIZED SEARCH ALGORITHM

——————————————————————————————–
Predefined: Unit vectors x̂i, along all the coordinate axes.

——————————————————————————————–
1. Input data: ρ and the error margin ∆.
2. Find the direction cosines (cos θi) of the received points as given by (7).
3. Find err = 1/cos(π/2−∆).
4. Calculate: cos θi ← sign(cos θi)

b| cos θi.err|c
err

.
5. IF cos θi = 0; don’t localize and search in both the directions of the axis;
6. ELSE localize in one direction of the axis according to the following:

(a) IF cos θi > 0; search in the positive side of the axis;
(b) ELSE search in the negative side of the axis ENDIF.

7. ENDIF.
8. Repeat the steps 2 to 7 for all the coordinate axes.
9. END PROCEDURE.
——————————————————————————————-

After confining the lattice search inside the sphere by
following the above approach, we then limit the search in the
quadrant in which the received point lies. The algorithm to be
followed for this purpose is summarized in Table 1. Initially,
the direction cosines between the transformed lattice point (ρ)
and the unit vector along ith axis (x̂i) are defined as follows:

cos θi =
〈ρ, x̂i〉
||ρ|| , (7)

for i = 1, 2, . . . , n, where 〈.〉 denotes inner product and ||.||
denotes the Euclidean norm.

If cos θi is positive, we just consider the sphere points lying
on the positive side of the ith coordinate axis. If cos θi is
negative, points lying on the negative side are considered.
The procedure is repeated for all the n-axes to localize the
algorithm in a particular quadrant. This is found to reduce
the complexity of the sphere decoder significantly because all
the points lying inside the sphere but outside the quadrant in
which the received point lies, are not considered for metric
evaluation. If the sphere itself lies only in one quadrant, the
proposed and the sphere algorithm have the same complexity.
However, the probability of the occurrence of such a case is
seen to be very low in the practical situations.

One practical case occurs when the received vector is very
close to the origin, resulting in the direction cosines to be
highly prone to noise. In such cases, even a small noise can
change the direction of the vector drastically. This case is taken
care by defining a threshold distance d0 from the origin. If
the distance of the received vector is less than this threshold,
all the sphere points are considered for matric evaluation and
it is not localized in a particular quadrant. The inclusion of
this in our algorithm have seen significant improvement in
the performance. However, we are still working on some
theoretical aspects of deciding the threshold value (d0) to
maximize the performance gain.

Another important practical issue to be taken into account
is the sensitivity of the direction cosine values. If the direction
cosine in a particular case is close to zero, i.e., θi is nearly
equal to π/2, the received point is equally probable to lie on
the either side of the coordinate axis. To take this fact into
account, we define an error margin ∆ and don’t localize in

any direction if θi ∈ [π/2 −∆, π/2 + ∆]. The choice of the
error margin ∆ is a design issue and is discussed in detail in
the next section along with the simulation results. Steps 3 and
4 of the proposed algorithm (given in Table 1), outline the
method followed to take into account the error margin in the
present work.

A. Graphical Interpretation of the Proposed Algorithm

The implementation of this algorithm can be graphically
thought of as tree search where each path through the tree
corresponds to a possible transmitted vector. The proposed
algorithm acts as a pruning algorithm where a sub-tree can
be rejected on any depth depending upon the violation of
the boundary conditions imposed by the sphere decoding
algorithm and the direction cosines. At this point, the tree is
backtraced and a different branch is tested. This is explained
in detail with reference to Fig. 2 which presents an example of
the path followed by the search algorithm. For the purpose of
illustration, we consider the case of decoding only 2 2-QAM
symbols at a time.

First level (l = 1) corresponds to the bounds on un. Only
those nodes which satisfies the aforementioned conditions are
traversed by the algorithm and the nodes which violate this
condition are ignored altogether along with their sub-trees.
Traversing the first valid node (node 1 in Fig. 2) at l = 1,
the algorithm enters the subtree and finds the bounds on un−1

for that node. This is continued until any of the condition is
violated (node 3 in Fig. 2). The algorithm then searches for
next valid node in the same level and traverses its sub-tree
until the condition is again violated (node 9 in Fig. 2) or it
reaches the node belonging to the lowermost level (node 21 in
Fig. 2). If no valid node is available at that level, the algorithm
backtraces to the higher levels in search of the valid node.

When the algorithm is able to traverse any node of the
lowermost level, the transmitted vector corresponding to the
path of this node from the root node (at l = 1) is said to
lie inside the sphere. Hence, the number of points considered
for matric evaluation is equal to the number of nodes of the
lowermost level traversed.

V. RESULTS AND DISCUSSION

The modeled system uses 16-QAM symbols for the golden
encoder, which defines the cardinality of the codeword alpha-
bet X to be 48. The performance comparison of the conven-
tional sphere decoder and the proposed Quadrant-Localized
Sphere Decoder (QLSD) with various values of ∆ is presented
in Fig. 3. As theoretically expected, the performance degrades
when we don’t keep any error margin in the direction cosine
values (∆ = 0). The performance nearly approaches that
of sphere decoder when sufficient error margin is chosen.
The computational complexity comparison between the sphere
decoder and the proposed QLSD in terms of the number
of points taken for metric evaluation is presented in Fig. 4.
The computational complexity is defined in terms of these
points because their enumeration involves most of the major
computational operations, whereas other points just involve
comparison operation which can be simply ignored. With
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Fig. 2. Graphical interpretation of the proposed algorithm as a tree search algorithm.

the increasing error margin, the number of points chosen for
metric calculations increase but are still significantly less than
those in the sphere decoder.

VI. CONCLUSION

A quadrant localized search based lattice decoding algo-
rithm for a full-rate space time code, i.e., golden code, is
proposed. The algorithm is sufficiently general to be applied to
any popular lattice decoding algorithm to reduce its complexity
further. We have specifically applied it to the conventional
sphere decoder using the golden space time encoder and have
observed a significant complexity reduction with only a small
degradation in the bit error rate at high SNR. The performance
of the proposed algorithm on the sphere decoder using an
adaptive radius value is currently being investigated by the
authors.
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