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Abstract—In this paper, we analyze jamming against wireless
networks from an error probability perspective. Specifically, we
investigate the impact of a fixed number of jammers against a
network of base stations (BS) or access points (AP). We first
derive analytical expressions for the error probability of a victim
receiver in the downlink of this wireless network and later
study whether or not some recent results related to jamming
in the point-to-point link scenario can be extended to the case of
jamming against wireless networks.

I. INTRODUCTION

Most studies that are related to jamming attacks at the phys-
ical layer only consider the presence of a single node (source-
destination pair) and develop optimal jamming strategies, see
[1], [2] and references therein. Having gained insights about
the jamming behavior in a single victim scenario, the next
step is to understand the jamming behavior against networks.
Jamming against wireless multi-hop networks has previously
been addressed from an optimization perspective in [3]-[5]. All
these works model networks as a graph and study the jamming
problem with an aim to find the best set of nodes/edges to
attack so that the network is disconnected. While these studies
indicate which nodes/links to be attacked, they do not address
the problem of jamming attacks against wireless networks from
a physical layer perspective and don’t consider infrastructure
networks such as cellular or WiFi. Therefore, in this paper, we
address the problem of attacking a wireless network when the
jammers are randomly deployed in a given area and how this
attack can be realized at the physical layer.

We consider a wireless network comprising of BS or APs
that are deployed in an area of interest and investigate the
impact of a fixed number of jamming nodes that are deployed
within this area. The network performance under the jamming
attack is analyzed from the perspective of the downlink of a
victim receiver that is accessing this wireless network. The
jammers are taken to be randomly deployed since the victim
receiver location is typically unknown a priori. Further, since
the number of jammer nodes is fixed, we model the jammer
network using a Binomial point process (BPP) [6].

Using the proposed model, we analyze the jamming perfor-
mance against the wireless network in terms of the error prob-
ability of the victim receiver. We derive analytical expressions
for this metric and analyze in detail the jamming impact in the
presence of shadowing and fading typically seen in wireless
environments. The error probability of the victim receiver can
be analyzed by using tools from stochastic geometry when
random spatial distributions are considered [7]. However, there
is relatively limited work in the literature that performs such
an analysis (see [8]-[10]). It is important to note that these
works are related to non-jamming scenarios.

A. Contributions

The error probability analysis in this paper is not a straight-
forward extension of the analysis in [8]-[10] because the
system model considered in this paper differs in the following
aspects: a) a BPP model for the jammers that attack the
victim receiver is considered, b) the effects of shadowing
are introduced, and c) a realistic path loss model given by
(1 + r)−α is considered which is different from the path loss
models used in [8]-[10].

In addition to obtaining analytical expressions for the error
probability of the victim receiver, we discuss in detail the effect
of the various parameters, such as the number of jammers
per BS and the network loading on the jamming impact at
the victim receiver. We also study the impact of some recent
findings related to jamming in a point-to-point link scenario,1
when analyzing jamming against wireless networks. While
extending the analysis in [1] to the case of networks is beyond
the scope of this paper, we discuss in detail the behavior of
various jamming signals using Monte Carlo simulations.

II. SYSTEM MODEL

We consider a victim wireless network of BSs or APs
that are modeled according to a homogeneous Poisson point
process (PPP) Ψ of density λT on R2 [11], [12]. The downlink
analysis in this paper is performed at the victim receiver which
is assumed to be at the origin. The behavior of this wireless
network is studied when it is attacked by a jammer network
with NJ jammers that is modeled according to a BPP ΨJ . The
jammers are located on a compact disk of radius RJ centered
at the origin denoted by b(0, RJ) ⊂ R2.

The received signal at the victim receiver is given by
y =

√
PTχ0(1 + r0)−

α
2 h0s0 +

∑
i∈Ψ\{0}

ai
√
PTχi(1 + ri)

−α
2 hisi︸ ︷︷ ︸

iagg(r0)

+
∑
i∈ΨJ

√
PJχJi (1 + di)

−α
2 giji︸ ︷︷ ︸

jagg

+n, (1)

where the BSs at distances ri from the origin send symbols
si ∈ M that are taken from a digital amplitude phase mod-
ulated constellation with E(|si|2) = 1. The random variable
χi = exp(xi) has a log-normal distribution and models the
shadowing such that xi ∼ N (µχ, σ

2
χ), where µχ and σχ

are respectively the mean and standard deviation of xi. In
(1), hi indicates a complex Gaussian random variable that

1In [1], we showed that the optimal jamming signaling scheme against a
digital amplitude-phase modulation scheme is not Gaussian signaling and that
it depends on the victim signal parameters.



models Rayleigh fading with E(|hi|2) = 1. The variables
r0, s0, χ0 and h0 are the respective parameters for the serving
BS with which the victim receiver communicates. All other
BSs signals are therefore interfering with the serving BS signal
to the victim receiver. In (1), ai is an indicator variable that
indicates whether or not the ith BS is active at a given time
instant. The interfering BSs independently transmit signals
with probability p, also known as the activity factor or the
network loading factor [13]. Hence, ai = 1 with probability p
and is 0 otherwise.

In (1), α > 2 is the path loss exponent. It has been shown
in [14], [15] that the commonly used distance-based path loss
model r−αi is inaccurate for smaller values of ri and that it is
used only for analytical tractability. Therefore, in this paper,
we use a more realistic model given by (1 + ri)

−α to model
the path loss between the ith BS and the victim receiver.

Let NJc = NJ
πR2

JλT
indicate the number of jammers per

cell (or per BS). The jammers attack the wireless network by
sending signals ji ∈MJ , whereMJ is the jammer’s signaling
scheme. In (1), gi is a zero-mean complex Gaussian random
variable that models Rayleigh fading with E(|gi|2) = 1 and
χJi models the log-normal shadowing such that χJi = exp(xJi )
and xJi ∼ N (µχ, σ

2
χ). The jammers send signals at a constant

power level PJ in order to attack the wireless network. In (1),
n is the zero-mean complex additive white Gaussian noise
(AWGN) at the victim receiver. Define the reference signal-
to-noise-ratio (transmit SNR) as SNR = PT

σ2 and the reference
jammer-to-noise ratio is JNR = PJ

σ2 .

We assume that the shadowing is constant over the time
of interest and hence the serving BS is selected based on the
average signal strength. In other words, shadowing impacts the
BS selection but fading does not. Under such conditions, the
overall effect of shadowing can be absorbed as a perturbation
in the locations of the BSs (recall that the BSs are distributed
according to a PPP) if E(χ

2/α
i ) <∞ [16], [17]. When this con-

dition holds true, without loss of generality, a new equivalent
PPP with density λTE(χ

2/α
i ) can be defined to model the BS

locations [17]. Now, the strongest BS association policy in the
original PPP is equivalent to the nearest BS policy association
in the transformed PPP without shadowing. Therefore, r0, s0

and h0 in (1) will now represent the parameters of the signal
received from the closest BS in the transformed PPP. In what
follows, for the ease of notation, we denote λTE(χ

2/α
i ) as λT .

Since the BSs are modeled according to a PPP, r0 is a
random variable with probability density function (pdf) equal
to fr0(η) = 2πλT η exp(−πλT η2) [10]. In (1), the interference
caused by the BSs besides the serving BS i.e., Ψ\{0}, is
denoted by iagg(r0) and the interference caused by jammers
is denoted by jagg . The jammers can transmit either additive
white Gaussian noise (AWGN) or any standard modulation
scheme to attack the victim [1]. The jamming performance
using different types of jamming signals will be discussed in
Section IV. A list of notations used is shown in Table I.

III. ERROR PROBABILITY

The maximum likelihood-based demodulator for decoding
the symbol s0 at the victim receiver when the received signal

TABLE I. NOTATIONS USED

Notation Definition
Ψ, λT PPP network of BSs/APs; density of BSs/APs
ΨJ , NJ BPP network of jammers; number of jammers
NJc Number of jammers per cell (per BS)
PT , PJ Transmit power of BSs, jammers
r0, h0, s0 Distance, channel and symbols of the closest BS/AP
ri, hi, si Distance, channel and symbols of the ith BS/AP
ai, p Indicator variable; activity factor for interfering BSs

di, gi, χ
J
i , ji Distance, channel, shadowing and symbols of

the ith jammer
µχ, σχ shadowing parameters
α Power-law path loss exponent

is given by (1) is

ŝ0 = arg min
s̃0∈M

{
Λ(s̃0) = |y −

√
PTh0(1 + r0)−

α
2 s̃0|2

}
. (2)

By ignoring the constant energy terms, this expression can be
further simplified as

Λ(s̃0) ∝ PT |∆s0,s̃0 |2|h0|2(1 + r0)−α

+ 2(1 + r0)−
α
2

√
PTR

(
v(r0)h∗0∆∗s0,s̃0

)
, (3)

where ∆s0,s̃0 = s0− s̃0, v(r0) = iagg(r0)+ jagg +n indicates
the total aggregate interference, R(x) indicates the real part of
the variable x, and x∗ indicates the complex conjugate of x.

It is clear that in order to analyze the error probability
of the victim receiver, v(r0) has to be characterized. This
entails characterizing the statistics of iagg(r0) and jagg . In
[7], the interference generated by a Poisson network model
i.e., iagg(r0) was shown to be equivalent in distribution to an
alpha-stable distribution. This equivalence was exploited in [8]
and [9] to explicitly characterize the SINR in a non-jamming
scenario (in terms of the signal levels as opposed to power
levels that are commonly used to analyze outage probability,
see [8], [9] for more details) to evaluate the error probability at
a receiver. By using the signal-based formulation as opposed
to power level-based formulation, the explicit dependency of
the error probability on the modulation schemes employed by
the receiver were addressed in [8] and [9]. However, as noted
in [6] and references therein, there are no closed form approx-
imations for the interference originating from a Binomial field
which is the model used for the jammer network distribution in
this paper. Hence, alternate techniques are necessary to analyze
the error probability of the victim receiver considered in this
paper. Specifically, we use the nearest neighbor approximation
(corresponding to the modulation schemeM) method [10] that
provides exact expressions for binary modulations and approx-
imations for higher order modulations. It is also important to
note that due to the different system model considered in the
current work, the results from [8]-[10] are not applicable.

The following steps are used to obtain the overall average
symbol error probability (ASEP):
1) The pairwise error probability (PEP) conditioned on r0, h0

and the specific realization of the jammer network ΨJ is first
expressed as a function of the aggregate interference v(r0).
2) Then using the Gil-Pelaez transform [18], we obtain the
cumulative distribution function for the aggregate interference
v(r0) which is used to obtain the average pairwise error
probability (APEP) by averaging over r0, h0 and the jammer
network statistics i.e., the BPP model.
3) Finally, APEP is used to compute the ASEP using the nearest
neighbor (NN) approximation corresponding to M [10].



APEP = E|h0|,r0,ΨJ [PEP(∆s0,ŝ0 ; |h0|, r0,ΨJ)]

=
1

2
− 1

π

∫ ∞
0

Er0

{ √
πPT

4(1 + r0)
α
2
|∆s0,ŝ0 | exp

[
−PT |∆s0,ŝ0 |2|ω|2

16(1 + r0)α

]
Φiagg (|ω|; r0)

}
EΨJ

[
Φjagg (|ω|)

]
Φn(|ω|)d|ω| (7)

EΨJ

[
Φjagg (|ω|)

]
=

(
1

|MJ |
∑

ji∈MJ

Eχ

{
1

R2
J

[
1F1

[
−2

α
; 1− 2

α
;− (|ω|

√
PJχ|ji|)2(1 +RJ)−α

4

]
(1 +RJ)2 − 1F1

[
−2

α
; 1− 2

α
;− (|ω|

√
PJχ|ji|)2

4

]]
− 2

R2
J

[
1F1

[
−1

α
; 1− 1

α
;− (|ω|

√
PJχ|ji|)2(1 +RJ)−α

4

]
(1 +RJ)− 1F1

[
−1

α
; 1− 1

α
;− (|ω|

√
PJχ|ji|)2

4

]]})NJ
(9)

A. PEP derivation

Let P(s0 → ŝ0|h0, r0,ΨJ) indicate the probability with
which an error is made in detecting the actual symbol s0

as ŝ0. Note that this happens when the likelihood metric is
maximized or in other words (2) is minimized at a symbol
ŝ0 which is different from s0. Mathematically, this can be
represented as follows;

P(s0 → ŝ0|h0, r0,ΨJ)

(a)
= P

{
R (v(r0)) < − (1 + r0)−

α
2

√
PT |∆s0,ŝ0 ||h0|
2

}
= FvRe

[
− (1 + r0)−

α
2

√
PT |∆s0,ŝ0 ||h0|
2

]
, (4)

where FvRe indicates the cumulative distribution function (cdf)
of vRe = R(v(r0)). In the above equation, (a) follows from
the fact that conditioned on r0, |h0| and the realization ΨJ ,
the aggregate interference v(r0) is a circularly symmetric
random variable. This is because the constellation symbols
are equally probable and symmetric, gi and hi are circularly
symmetric complex Gaussian random variables and χJi is a
real random variable. Hence, v(r0) has the same distribution
as v(r0) exp(−j(θ0 + ∠∆∗s0,ŝ0)) (∠x is the phase of x).

Let Φx indicate the characteristic function of a random
variable x. By using the Gil-Pelaez transform [10] to express
the cdf FvRe(x) as a function of the characteristic function of
the aggregate interference and the facts that (i) v is a circularly
symmetric random variable which implies that Φv(|ω|; r0) =
R(Φv(|ω|; r0)), Φv(|ω|; r0) = ΦvRe(|ω|; r0) [9], and (ii) ΦvRe
is a real function, we have

FvRe(v) =
1

2
+

1

π

∫ ∞
0

sin(|ω|v)ΦvRe(|ω|; r0)

|ω|
d|ω|,

PEP(∆s0,ŝ0 ; |h0|, r0,ΨJ) =

1

2
−1

π

∫ ∞
0

sin

[
|ω|(1+r0)−

α
2
√
PT |∆s0,ŝ0

||h0|
2

]
Φv(|ω|; r0)

|ω|
d|ω|. (5)

Please see the longer version of this paper [19] for more details
on the derivation of (5).

The next step is to evaluate Φv(|ω|; r0). Since iagg(r0),
jagg and n are independent of each other we have

Φv(|ω|; r0) = Φiagg (|ω|; r0)Φjagg (|ω|)Φn(|ω|). (6)
Therefore the APEP can be shown to be given by (7), which
follows by using the fact that h0 is a zero-mean complex
Gaussian random variable with unit variance i.e., |h0| is a

Rayleigh random variable. Thus, we have to first evaluate
the characteristic functions of iagg(r0) and jagg . It is known
that Φn(|ω|) = exp(−|ω|2/4) for a zero-mean, unit variance
complex Gaussian random variable. It remains to evaluate
Φiagg (|ω|; r0) and EΨJ

[
Φjagg (|ω|)

]
.

The characteristic function Φjagg (|ω|) for a given realiza-
tion of the jammer topology is first evaluated and then averaged
over the BPP in order to obtain EΨj

[
Φjagg (|ω|)

]
. Specifically,

Φjagg (|ω|) can be shown to be

Φjagg (|ω|) =

NJ∏
i=1

Eẑ
[
cos
[
|ω|
√
PJ(1 + di)

−α2 ẑ
]]
. (8)

where ẑ = R(z) and z =
√
χJi giji. Due to a lack of space, we

skip the derivation of (8) in this paper. See the longer version
of this paper [19] for a complete analysis.

Theorem 1: The characteristic function of the jammer in-
terference as seen at the victim receiver i.e., EΨJ

[
Φjagg (|ω|)

]
is given by (9).

Proof : See Appendix.

The error probability is dependent on the jammer’s signal-
ing scheme via the term E(ẑ2q) given by

E(ẑ2q) =
Γ(q + 1

2 )
√
π

E(χq)E
[
|ji|2q

]
, (10)

where q is a non-negative integer and Γ(x) is the gamma
function.

Remark 1: Any constant modulus signaling scheme will
have the same value for E(ẑ2q). This indicates that irrespective
of the constant modulus-signaling scheme used by the jammer,
the error probability at the victim receiver will remain the
same. This behavior is due to the fact that the jammer is
not aware of the channel gi and hence cannot compensate
for the random rotations introduced by gi. Therefore, the
results in [1] which indicate that modulation-based jamming
is optimal, cannot be reproduced in this case. This behavior
will be explained via numerical results in Section IV.

Corollary 1: The APEP of the victim receiver when the
jammer network uses a zero-mean, unit variance AWGN
jamming signal is given by replacing E(|ji|2q) in (10) with
2qΓ(q+ 1

2 )√
π

.

Proof : From [21, Eq. 16], it is known that if X is a Gaussian



T1 =
1

|M|
∑
si∈M

πpλT (1 + r0)2
1F1

[
−2

α
; 1− 2

α
;− (|ω|

√
PT |si|)2(1 + r0)−α

4

]
.

T2 =
1

|M|
∑
si∈M

2πpλT (1 + r0)1F1

[
−1

α
; 1− 1

α
;− (|ω|

√
PT |si|)2(1 + r0)−α

4

]
. (13)

random variable with mean ν and variance σ2, we have

E
[
(X − ν)2q

]
= σ2q 2qΓ(q + 1

2 )
√
π

. (11)

The proof is straightforward using this result.

Remark 2: Corollary 1 states that the theoretical expres-
sion for AWGN jamming can be obtained by replacing
E(|ji|2q) in (10) with (11) i.e., instead of averaging over the
various modulation symbols that the jammer may use, the
averaging is performed over the Gaussian distribution. While it
is not easy to explain the AWGN jamming performance by (9)
alone, based on the results in [1] it is expected that when the
jammer is not aware of gi, then the jamming performance of
any modulation-based jamming and AWGN jamming will be
the same. However, when the jammer can compensate for the
effects of the fading channel, then the error probability can be
significantly increased by using specific modulation schemes.

Corollary 2: The characteristic function of the aggregate
interference from the BSs besides the serving BS is given by

Φiagg (ω; r0) = exp
[
πpλT r

2
0 − T1 + T2

]
, (12)

where T1 and T2 are shown in (13).

Proof : See Appendix C in [19].

Finally, by using Φiagg (|ω|; r0) and EΨJ

[
Φjagg (|ω|)

]
, the

overall APEP in (7) can be evaluated irrespective of the
signaling schemes used by the BSs and the jammers.

B. Gaussian-Hermite quadrature approximation

In order to evaluate the jammer characteristic function
EΨJ

[
Φjagg (|ω|)

]
, it is necessary to evaluate functions of the

form Eχ [pFq [a1, . . . , ap; b1, . . . , bq; f ]]. Since it is computa-
tionally intensive to evaluate the integrals of hypergeometric
functions, we use the Gaussian-Hermite quadrature (GHQ)
approximation [19].

Lemma 1: By using the Gaussian-Hermite quadrature ap-
proximation, we have

Eχ [pFq [a1, .., ap; b1, .., bq; f ]]

≈ 1√
π

N∑
n=1

wnpFq

[
a1, .., ap; b1, .., bq; f exp(

√
2σχxn)

]
, (13)

where wn and xn are the weights and roots of the Hermite
polynomial [22].

Proof : The proof follows by using the series
expansion of the generalized Hypergeometric function
pFq [a1, .., ap; b1, .., bq; f ] and the GHQ approximation [19].

In Section IV, we show that N = 10 terms can closely
approximate (13).

C. ASEP Evaluation

ASEP can be upper bounded by using the union bound and
APEP as follows:

ASEP ≤ 1

M

M∑
m=1

Nm∑
i=1

APEP(|∆m,i|), (14)

where M is the total number of equi-probable symbols in
the constellation M, Nm are the total number of neighbors
for the mth symbol and |∆m,i| is the distance between
the mth symbol and its ith neighbor. By using the nearest
neighbor approximation (corresponding to M), ASEP can be
approximated as

ASEP ≈ 1

M

M∑
m=1

Nm
∆min

APEP(|∆m
min|), (15)

where ∆m
min is the minimum distance between the mth symbol

and all its neighbors and Nm
∆min

is the number of such neigh-
bors that are at a distance of ∆m

min. For symmetric constella-
tions, where ∆m

min is the same for all symbols, we have ASEP ≈
Navg

∆min
APEP(|∆min|) where Navg

∆min
= 1

M

∑M
m=1N

m
∆min

. For
instance, in the case of 16-QAM, we have Navg

∆min
= 3 and

∆min = 2/
√

10 (assuming unit-average energy for the modu-
lation scheme). It is important to observe that this method gives
exact error probability expression only for binary modulation
schemes. We will next present several results that compare
these theoretical expressions with Monte-Carlo simulations.

IV. RESULTS AND DISCUSSION

In this section, numerical results are shown in order to
validate the theoretical inferences presented earlier and also
to shed light on the jamming impact against the wireless
network. We use a BS deployment density equivalent to that
of an hexagonal grid with 500m inter site distance i.e. λT =
2/(
√

3 · 5002m2) [20]. The simulation area is chosen such
that an average of 100 active BSs (according to the activity
factor p) are present in the wireless network (to avoid edge
effects). The path loss exponent α is taken to be 3.7, µχ = 0
and σχ = 6dB. In order to account for the shadowing in the
BS network, using the displacement theorem the effective BS
density is taken to be λT exp

[
2σ2
χ

α2

]
. The radius RJ of the

compact disk b(0, RJ) in which the jammers are distributed
according to a BPP depends on λT , NJ and NJc as

√
NJ

πλTNJc
.

As is convention, the power levels considered in the
results shown below correspond to transmit SNR and not the
received power levels at the victim receiver. Via simulations
we observed that for the parameters chosen, the SINR at the
victim receiver is typically in the range [−10, 30]dB.

1) Gaussian-Hermite quadrature approximation to evalu-
ate EΨJ

[
Φjagg (|ω|)

]
: We first discuss the Gaussian-Hermite

quadrature approximation used in Lemma 1. We compare
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approximation.

Transmit SNR (dB)
100 110 120 130 140 150 160 170

A
v
e
ra

g
e
 s

y
m

b
o
l 
e
rr

o
r 

ra
te

10
-3

10
-2

10
-1

10
0

No jamming, p=0.01
p=0.01
p=0.1
p=1

Fig. 2. [Effect of Activity Factor]: Average symbol error rate as a function of
the activity factor p when the victim receiver uses BPSK modulation and the
jammer network uses BPSK modulation. NJ = 4, NJc = 1, JNR = 100 dB.
The solid lines indicate the Monte Carlo simulation results and the markers
indicate the theoretical ASEP evaluated using (14).

Eχ
[
1F1

[
− 1
α , ; 1− 1

α ;−fχ
]]

and 1√
π

∑N
n=1 wn1F1

[
− 1
α , ;1−

1
α ;−f exp(

√
2σχxn)

]
as a function of N when σχ = 6dB.

The arguments for the Hypergeometric function are chosen
based on the jammer characteristic function in Theorem 1.
Fig. 1 shows the accuracy of the approximation as a function
of N . Since the approximation with N = 10 terms closely
matches the true value, in what follows we use N = 10 and
evaluate the error probability.

2) Effect of number of jammers and activity factor: Fig. 2
shows the theoretical and the simulation results for the error
probability of the victim receiver as a function of the activity
factor p when BPSK modulation scheme is used both by the
BSs and the jammers. Note that we used BPSK modulation
scheme against BPSK victim signal because [1] indicates that
BPSK is the optimal modulation scheme against a BPSK
victim signal. However replicating the theoretical analysis in
[1] to the context of networks is beyond the scope of this
paper. Instead, we present various simulation results that take
consider various jamming signals that may be used. It is seen
in Fig. 2 that the theoretical ASEP expressions in Section III
match perfectly with the Monte Carlo simulation results for
various activity factors p. Also, ASEP increases with p due
to increased interference from the active interfering BSs. The
error probability in a non-jamming scenario is constant due to
the interference-limited scenarios considered in this paper.

Fig. 3 shows the theoretical and the simulation results
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Fig. 3. [Effect of NJc ]: Average symbol error rate when the victim receiver
uses BPSK modulation and the jammer network uses BPSK modulation as a
function of the number of jammers per cell (BS). The solid lines indicate the
Monte Carlo simulation results and the markers indicate the theoretical ASEP
evaluated using (14).

Transmit SNR (dB)
100 110 120 130 140 150 160 170

A
v
e
ra

g
e
 s

y
m

b
o
l 
e
rr

o
r 

ra
te

10
-3

10
-2

10
-1

10
0

QPSK Jamming
BPSK Jamming
AWGN Jamming

No Jamming

p=0.01
p=0.1

p=1

Fig. 4. [Effect of the jamming signaling scheme]: Average symbol error
rate as a function of p when the victim receiver uses BPSK modulation and
different jamming signals are used by the jammer network. NJ = 4, NJc =
1. It is seen that in all cases, the jamming performance of the three jamming
signals are the same.

for the error probability as a function of the number of
jammers per BS in the network. See that the theoretical and
the simulation results match perfectly. Also the behavior of
ASEP is as expected– ASEP increases with NJc due to increased
interference from the jammers. Note that because we consider
interference limited scenarios, the error probability flattens out
in all these results. Further notice that with only one jammer
per cell, the error probability can be significantly increased.

3) Effect of various jamming signals: Fig. 4 shows the
jamming behavior of various jamming signals against BPSK
modulated victim signals. As was explained earlier, any con-
stant envelope modulation schemes such as BPSK and QPSK
will cause the same impact on the victim. Similarly, the AWGN
jamming signal will cause the same error rate at the victim
as the jammers are not aware of the fading channel between
itself and the victim receiver. Therefore, the random channel
gi between the ith jammer and the victim, randomly rotates
the BPSK and QPSK jamming signals which will now appear
similar to AWGN signals when they reach the victim receiver.
Hence, under such cases the optimal jamming results discussed
in [1] are not realized.

Note: In interference limited scenarios, the NN approxima-
tion (corresponding to the modulation scheme of the victim)
gives exact error probability expressions only for the binary
modulation schemes. Under the interference limited scenarios,
such as the ones studied in this work, this approximation does
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not accurately evaluate the error probability when higher order
modulations are considered. Furthermore, we observed that
standard computational tools such as Matlab and Mathematica
failed in handling singularities in the evaluation of ASEP shown
in (14). Despite using the approximations for the hyperge-
ometric functions suggested in [10], we observed that these
tools provided significantly different results especially when
handling higher order modulations such as QPSK, 16-QAM. It
is therefore necessary to find alternative techniques that enable
us to analyze higher order modulation schemes as well.

V. CONCLUSION

In this paper, we studied jamming against wireless net-
works from a physical layer perspective by employing tools
from stochastic geometry. Specifically, we studied jamming
against a network of BS/AP that are increasingly being mod-
eled according to a PPP. Since the victim locations are typically
not known a priori we modeled the jammer network with
a fixed number of nodes according to a BPP and studied
the wireless network performance from the error probabil-
ity perspective of a victim receiver. We analyzed the error
probability of the victim receiver, both from a simulation
and a theoretical perspective and showed that the exact error
probability expressions can be evaluated in the case of binary
modulations. We showed that some recent results related to
modulation-based jamming in a point-to-point link setting
cannot be directly extended to the case of jamming against
wireless networks. Investigating the jammer behavior against
higher order modulation schemes and in the case of multiple-
input multiple-output-based wireless networks is an interesting
future avenue to pursue.
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APPENDIX - PROOF OF THEOREM 1

Due to a lack of space, we briefly sketch the proof. For
the complete proof, see [19]. The jammer’s characteristic
function can be shown to be given by (16), which follows
by using the fact that the jammers and their locations are
independent and identically distributed. To simplify (16), we
use [23, Eq. 3.771.4] and then evaluate Eẑ(ẑ2q). First, recall
that ẑ = R(z) =

√
χ|gi||ji| cos(∠gi + ∠ji). Notice that

|gi| cos(∠gi + ∠ji) is a Gaussian random variable with mean
0 and variance 1

2 . Then by using (11), we have

Eẑ(ẑ
2q) =

Γ(q + 1
2 )E(χq)

|MJ |
√
π

∑
ji∈MJ

|ji|2q, (17)

Substituting (17) in (16), using the series expansion of hy-
pergeometric function and noting that ( 1

2 )q =
Γ(q+ 1

2 )√
Π

and
1F2[a; b, 1;x] = 1F1[a; b;x], we have (9). The expectation
of the Hypergeometric functions with respect to χ can be
simplified using the GHQ approximation.


